Study of interaction of the receptor for the hemagglutinin

Petr Michalek, Ondrej Zitka, Rene Kizek

Influenza viruses compared to other viruses are characterized by considerable genetic variability. From the view of the ability of the virus to infect the host cell the determining factor is the structure of the surface antigens of the virus and the host cell receptor structure. To change the preferential binding of the virus to various cell receptors just one amino acid substitution in the primary structure of hemagglutinin is enough. The cause of this change in the antigenic properties is either the antigenic shift or antigenic shift. Thereby, new influenza strains with new antigenic type can develop very quickly and a human population is not capable to immunologically distinguished it with sufficient speed. Yet widely used drugs are increasingly perceived as controversial, due to their declining benefits and vice versa to growing negative effects. And despite considerable progress in the research of influenza viruses and their receptors at the molecular and structural level no sufficiently effective alternative has not been introduced yet.

houbova
Figure 1: The cycle replication of influenza virus adapted 22 The influenza virus (1) binds (2) sialic acid in plasma membrane glycocalyx. Bound virus is then endocytosed (3). The hemagglutinin is color-coded red; neuraminidase blue. Ion channels and lipids viral envelopes are marked in green. During ripening the pH of the endosome Klas is initiated and the connection (4) viral envelopes (green) with the endosomal membrane (gray) and the release of viral RNA (5) (orange) and viral proteins into the cytosol. Viral RNA enters (6) to the nucleus where replication takes place. The newly formed viral RNA (7) is exported to the cytosol and together with the structural proteins to form (8) of new virions.

1. Johnson N., Mueller J.: Bulletin of the History of Medicine, 76, 105 (2002).
2. Ginsberg J., Mohebbi M. H., Patel R. S., Brammer L., Smolinski M. S., Brilliant L.: Nature, 457, 1012 (2009).
3. Basler C. F., Aguilar P. V.: Antiviral Research, 79, 166 (2008).
4. Wiley D. C., Skehel J. J.: Annual Review of Biochemistry, 56, 365 (1987).
5. Russell R. J., Kerry P. S., Stevens D. J., Steinhauer D. A., Martin S. R., Gamblin S. J., Skehel J. J.: Proceedings of the National Academy of Sciences of the United States of America, 105, 17736 (2008).
6. Gamblin S. J., Haire L. F., Russell R. J., Stevens D. J., Xiao B., Ha Y., Vasisht N., Steinhauer D. A., Daniels R. S., Elliot A., Wiley D. C., Skehel J. J.: Science, 303, 1838 (2004).
7. Madhusoodanan M., Lazaridis T.: Biophysical Journal, 84, 1926 (2003).
8. Skehel J. J., Wiley D. C.: Annual Review of Biochemistry, 69, 531 (2000).
9. Stevens J., Blixt O., Tumpey T. M., Taubenberger J. K., Paulson J. C., Wilson I. A.: Science, 312, 404 (2006).
10. Isin B., Doruker P., Bahar I.: Biophysical Journal, 82, 569 (2002).
11. Garten W., Klenk H. D.: Trends in Microbiology, 7, 99 (1999).
12. Gamblin S. J., Skehel J. J.: Journal of Biological Chemistry, 285, 28403 (2010).
13. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C.: Nature, 371, 37 (1994).
14. Walker J. A., Molloy S. S., Thomas G., Sakaguchi T., Yoshida T., Chambers T. M., Kawaoka Y.: Journal of Virology, 68, 1213 (1994).
15. van Riel D., Munster V. J., de Wit E., Rimmelzwaan G. F., Fouchier R. A. M., Osterhaus A., Kuiken T.: Science, 312, 399 (2006).
16. Brown I. H.: Options for the Control of Influenza Iv, 1219, 173 (2001).
17. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M. R., Donatelli I., Kawaoka Y.: Journal of Virology, 74, 8502 (2000).
18. Glaser L., Stevens J., Zamarin D., Wilson I. A., Garcia-Sastre A., Tumpey T. M., Basler C. F., Taubenberger J. K., Palese P.: Journal of Virology, 79, 11533 (2005).
19. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C.: Nature, 304, 76 (1983). 20. Chen J. Z., Deng Y. M.: Virology Journal, 6, (2009).
21. Carrat F., Flahault A.: Vaccine, 25, 6852 (2007).
22. Hamilton B. S., Whittaker G. R., Daniel S.: Viruses-Basel, 4, 1144 (2012).
23. Ilyushina N. A., Govorkova E. A., Webster R. G.: Virology, 341, 102 (2005).
24. Lackenby A., Thompson C. I., Democratis J.: Current Opinion in Infectious Diseases, 21, 626 (2008).
25. Torres J., et al.: Bioinformation, 8, 870 (2012).
26. Yang J., Li M. M., Shen X. T., Liu S. W.: Viruses-Basel, 5, 352 (2013).
27. Lopez-Martinez R., Ramirez-Salinas G. L., Correa-Basurto J., Barron B. L.: Plos One, 8, (2013).
28. Jones J. C., Turpin E. A., Bultmann H., Brandt C. R., Schultz-Cherry S.: Journal of Virology, 80, 11960 (2006).
29. Beppu Y., Imamura Y., Tashiro M., Towatari T., Ariga H., Kido H.: Journal of Biochemistry, 121, 309 (1997).
30. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G.: Journal of General Virology, 65, 191 (1984).
31. Kido H., Yokogoshi Y., Sakai K., Tashiro M., Kishino Y., Fukutomi A., Katunuma N.: Journal of Biological Chemistry, 267, 13573 (1992).
32. Kido H., Sakai K., Kishino Y., Tashiro M.: Febs Letters, 322, 115 (1993).
33. Bottcher-Friebertshauser E., Stein D. A., Klenk H. D., Garten W.: Journal of Virology, 85, 1554 (2011).
34. Lupfer C., Stein D. A., Mourich D. V., Tepper S. E., Iversen P. L., Pastey M.: Archives of Virology, 153, 929 (2008).
35. Gabriel G., Nordmann A., Stein D. A., Iversen P. L., Klenk H. D.: Journal of General Virology, 89, 939 (2008).

pdfPDF