Therapeutical application of antiviral peptides against influenza virus

Sylvie Skalickova, Ondrej Zitka, Rene Kizek

Influenza spreads around the world in seasonal epidemics and it is caused by a variety of species and strains of viruses, in any given year some strains can die out while others create epidemics, while yet another strain can cause a pandemic. The peptides may present the new generation of antiviral drugs with the broad spectrum of activity. The antiviral effects depend on their structure as well as the target part of the virus. We showed the manner of action of peptides on the influenza virus. The entry blocker peptides interact with hemagglutinin and inhibit the viral fusion. Furthermore the peptides are capable to disrupt viral envelope or block the viral replication. The perceptivity of therapeutic peptides is supported by wild abilities of their synthesis, possibility of modifications, synthesis for specific action, minimizing the emergence of resistance. Clearly, all these studies are promising, and need to be expanded.

merlos-1
Fig. 1: Illustrative schematic of the apparatus used for the analysis of nucleic acids (A). Amplifier applied voltage Vc and detects changes in the current passing through hemolysin Ip. When applying a voltage of 120 mV using 1 M KCl as electrolyte passes hemolysin reference current of 120 pA, which is the translocation of ssDNA reduced to 15 Pa (B)

1. Wiesner J., Vilcinskas A.: Virulence, 1, 440 (2010).
2. Lok S. M., Costin J. M., Hrobowski Y., Hoffmann A. R., Rowe D. K., Kukkaro P., Holdaway H., Chipman P., Fontaine K. A., Holbrook M. R., Garry R. F., Kostyuchenko V., Wimley W. C., Isern S., Rossmann M. G., Michael S. F.: Plos One, 7, (2012).
3. Albericio F., Kruger H. G.: Future Medicinal Chemistry, 4, 1527 (2012).
4. Saladino R., Botta G., Crucianelli M.: Mini-Reviews in Medicinal Chemistry, 12, 277 (2012).
5. Castel G., Chteoui M., Heyd B., Tordo N.: Molecules, 16, 3499 (2011).
6. Hetenyi C., van der Spoel D.: Protein Science, 11, 1729 (2002).
7. Rajendran L., Knoelker H.-J., Simons K.: Nature Reviews Drug Discovery, 9, 29 (2010).
8. Teixeira V., Feio M. J., Bastos M.: Progress in Lipid Research, 51, 149 (2012).
9. Dolezilkova I., Mackova M., Macek T.: Chemicke Listy, 105, 346 (2011).
10. Brogden K. A.: Nature Reviews Microbiology, 3, 238 (2005).
11. Yang J., Li M. M., Shen X. T., Liu S. W.: Viruses-Basel, 5, 352 (2013).
12. Medina R. A., Garcia-Sastre A.: Nature Reviews Microbiology, 9, 590 (2011).
13. Cederlund A., Gudmundsson G. H., Agerberth B.: Febs Journal, 278, 3942 (2011).
14. Jones J. C., Turpin E. A., Bultmann H., Brandt C. R., Schultz-Cherry S.: Journal of Virology, 80, 11960 (2006).
15. Doss M., White M. R., Tecle T., Gantz D., Crouch E. C., Jung G., Ruchala P., Waring A. J., Lehrer R. I., Hartshorn K. L.: Journal of Immunology, 182, 7878 (2009).
16. Wang W., Cole A. M., Hong T., Waring A. J., Lehrer R. I.: Journal of Immunology, 170, 4708 (2003).
17. Doss M., Ruchala P., Tecle T., Gantz D., Verma A., Hartshorn A., Crouch E. C., Luong H., Micewicz E. D., Lehrer R. I., Hartshorn K. L.: Journal of Immunology, 188, 2759 (2012).
18. Nayak D. P., Barman S.: Advances in Virus Research, Vol 58, 58, 1 (2002).
19. Ono A., Freed E. O.: Virus Structure and Assembly, 64, 311 (2005).
20. Schaap I. A. T., Eghiaian F., des Georges A., Veigel C.: Journal of Biological Chemistry, 287, 41078 (2012).
21. Needham B. D., Trent M. S.: Nature Reviews Microbiology, 11, 467 (2013).
22. Anaya-Lopez J. L., Lopez-Meza J. E., Ochoa-Zarzosa A.: Critical Reviews in Microbiology, 39, 180 (2013).
23. Mercer D. K., O'Neil D. A.: Future Medicinal Chemistry, 5, 315 (2013).
24. Barlow P. G., Svoboda P., Mackellar A., Nash A. A., York I. A., Pohl J., Davidson D. J., Donis R. O.: Plos One, 6, e25333 (2011).
25. Dean R. E., O'Brien L. M., Thwaite J. E., Fox M. A., Atkins H., Ulaeto D. O.: Peptides, 31, 1966 (2010).
26. Bals R., Wang X. R., Zasloff M., Wilson J. M.: Proceedings of the National Academy of Sciences of the United States of America, 95, 9541 (1998).
27. Raghuraman H., Chattopadhyay A.: Bioscience Reports, 27, 189 (2007).
28. Lee M. T., Hung W. C., Chen F. Y., Huang H. W.: Proceedings of the National Academy of Sciences of the United States of America, 105, 5087 (2008).
29. Ladokhin A. S., White S. H.: Biochimica Et Biophysica Acta-Biomembranes, 1514, 253 (2001).
30. Lu N.-Y., Yang K., Li J.-L., Yuan B., Ma Y.-Q.: Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828, 1918 (2013).
31. Gordon-Grossman M., Zimmermann H., Wolf S. G., Shai Y., Goldfarb D.: Journal of Physical Chemistry B, 116, 179 (2012).
32. Gordon-Grossman M., Gofman Y., Zimmermann H., Frydman V., Shai Y., Ben-Tal N., Goldfarb D.: Journal of Physical Chemistry B, 113, 12687 (2009).
33. Oren Z., Shai Y.: Peptide Science, 47, 451 (1998).
34. Benachir T., Lafleur M.: Biochimica et Biophysica Acta (BBA) - Biomembranes, 1235, 452 (1995).
35. Li N., Yin L., Thevenin D., Yamada Y., Limmon G., Chen J. Z., Chow V. T. K., Engelman D. M., Engelward B. P.: Future Microbiology, 8, 257 (2013).
36. Neumann G., Brownlee G. G., Fodor E., Kawaoka Y.: Biology of Negative Strand Rna Viruses: The Power of Reverse Genetics, 283, 121 (2004).
37. Deng T., Sharps J., Fodor E., Brownlee G. G.: Journal of Virology, 79, 8669 (2005).
38. Martin-Benito J., Ortin J.: Advances in Virus Research, Vol 87, 87, 113 (2013).
39. Chase G., Wunderlich K., Reuther P., Schwemmle M.: Methods, 55, 188 (2011).
40. Palu G., Loregian A.: Antiviral Research, 99, 318 (2013).

pdfPDF