General Mechanisms of Microbial resistance to metals

Matej Sklenar, Dagmar Chudobova, Kristyna Cihalova, Marie Konecna, Vojtech Adam, Rene Kizek,

In this review is presented general mechanism of bacterial resistence against metals. Bacteria was adapting to outer conditions during the evolotion. Ability of resistence is carried by genetic informations in DNA which may be located in different parts of cell. According to character of resistence there are different localization of genetic information where metal resistance is coded. It dependes on the fact if the metal is essential or non-essential (plasmid, chromosome, transposome). There are six postulated mechanisms of metal resistence in microorganisms, metal exclusion by permeability barrier, active transport of metal away from the cell, intracellular sequeatration of the metal by protein biding, extracellular sequestration, enzymatic detoxification to less toxic form, reduction in metal sensitivity of cellular targets.

1. Paterson G. K., Harrison E. M., Holmes M. A.: Trends in Microbiology, 22, 42 (2014).
2. O'Grady K. A. F., Whiley D. M., Torzillo P. J., Sloots T. P., Lambert S. B.: Bmc Infectious Diseases, 13, (2013).
3. Rasool R., Hasnain S., Nishat N.: Designed Monomers and Polymers, 17, 217 (2014).
4. Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinska M.: Nanotoxicology, 8, 233 (2014).
5. Kanmani P., Rhim J. W.: Food Chemistry, 148, 162 (2014).
6. Passow H., Rothstein A.: Journal of General Physiology, 43, 621 (1960).
7. Altimira F., Yanez C., Bravo G., Gonzalez M., Rojas L. A., Seeger M.: Bmc Microbiology, 12, (2012).
8. Gutteridge J. M. C., Halliwell B.: Trends in Biochemical Sciences, 15, 129 (1990).
9. Rouch D. A., Lee B. T. O., Morby A. P.: Journal of Industrial Microbiology, 14, 132 (1995).
10. Nakahara H., Ishikawa T., Sarai Y., Kondo I., Kozukue H., Silver S.: Applied and Environmental Microbiology, 33, 975 (1977).
11. Marques A. M., Congregado F., Simonpujol D. M.: Journal of Applied Bacteriology, 47, 347 (1979).
12. Harnett N. M., Gyles C. L.: Applied and Environmental Microbiology, 48, 930 (1984).
13. Belliveau B. H., Starodub M. E., Trevors J. T.: Canadian Journal of Microbiology, 37, 513 (1991).
14. Wang Y. T., Shen H.: Journal of Industrial Microbiology, 14, 159 (1995).
15. Silver S., Ji G. G.: Environmental Health Perspectives, 102, 107 (1994).
16. Harnett N. M., Gyles C. L.: Applied and Environmental Microbiology, 48, 930 (1984).
17. McEntee J. D., Woodrow J. R., Quirk A. V.: Applied and Environmental Microbiology, 51, 515 (1986).
18. Schwarz S., Blobel H.: Journal of Veterinary Medicine Series B-Zentralblatt Fur Veterinarmedizin Reihe B-Infectious Diseases and Veterinary Public Health, 36, 669 (1989). 19. Nies D. H., Silver S.: Journal of Industrial Microbiology, 14, 186 (1995).
20. Schreurs W. J. A., Rosenberg H.: Journal of Bacteriology, 152, 7 (1982).
21. Nieboer E., Richardson D. H. S.: Environmental Pollution Series B-Chemical and Physical, 1, 3 (1980).
22. Nies D. H.: Applied Microbiology and Biotechnology, 51, 730 (1999).
23. Silver S., Walderhaug M.: Microbiological Reviews, 56, 195 (1992).
24. Misra T. K., Brown N. L., Fritzinger D. C., Pridmore R. D., Barnes W. M., Haberstroh L., Silver S.: Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 81, 5975 (1984).
25. Ji G. Y., Silver S.: Journal of Industrial Microbiology, 14, 61 (1995).
26. Bagg A., Neilands J. B.: Biochemistry, 26, 5471 (1987).
27. Braun V., Gunter K., Hantke K.: Biology of Metals, 4, 14 (1991).
28. Cervantes C., Silver S., Inorganic cation and anion transport-systems of Pseudomonas, Amer Soc Microbiology, Washington, 1990.