Biosynthesis of quantum dots

Alexandra Donovalova, Marketa Kominkova, Ondrej Zitka, Rene Kizek,

Nanoparticles are used in a wide range of disciplines due to their properties. The most common preparation is by physical and chemical synthesis, which uses a toxic chemicals that are not environmentally friendly and also limits the potential of the nanoparticles in their clinical applications. It is because of the negative properties of nanoparticles prepared by classical synthesis that a new type of synthesis comes to the fore. This is made possible by the ability of organisms to biosynthesize the nanoparticles either in the body or in the environment. Ability of the biosynthesis was demonstrated in a variety of microorganisms, but also in arthropods or even in mammals. Biosynthesis ability of organisms can be used both for the preparation of nanoparticles and for the reduction of contamination, since the raw materials for the synthesis are obtained from the environment. Biosynthesis by microorganisms could be a suitable alternative to conventional synthesis of quantum dots, mainly due to their low demands on the feedstock and the resulting biocompatibility of nanoparticles.

1. Mala J. G. S., Rose C.: Journal of Biotechnology, 170, 73 (2014).
2. Nath D., Banerjee P.: Environmental Toxicology and Pharmacology, 36, 997 (2013).
3. Alivisatos A. P.: Science, 271, 933 (1996).
4. Valizadeh A., Mikaeili H., Samiei M., Farkhani S. M., Zarghami N., Kouhi M., Akbarzadeh A., Davaran S.: Nanoscale Research Letters, 7, (2012).
5. Hardman R.: Environmental Health Perspectives, 114, 165 (2006).
6. Bao H. F., Lu Z. S., Cui X. Q., Qiao Y., Guo J., Anderson J. M., Li C. M.: Acta Biomaterialia, 6, 3534 (2010).
7. Dhillon G. S., Brar S. K., Kaur S., Verma M.: Critical Reviews in Biotechnology, 32, 49 (2012).
8. Asmathunisha N., Kathiresan K.: Colloids and Surfaces B-Biointerfaces, 103, 283 (2013).
9. Park T. J., Lee S. Y., Heo N. S., Seo T. S.: Angewandte Chemie-International Edition, 49, 7019 (2010).
10. Kowshik M., Deshmukh N., Vogel W., Urban J., Kulkarni S. K., Paknikar K. M.: Biotechnology and Bioengineering, 78, 583 (2002).
11. Quester K., Avalos-Borja M., Castro-Longoria E.: Micron, 54-55, 1 (2013).
12. Monras J. P., Diaz V., Bravo D., Montes R. A., Chasteen T. G., Osorio-Roman I. O., Vasquez C. C., Perez-Donoso J. M.: Plos One, 7, (2012).
13. Syed A., Ahmad A.: Colloids and Surfaces B-Biointerfaces, 97, 27 (2012).
14. Syed A., Ahmad A.: Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 106, 41 (2013).
15. Sturzenbaum S. R., Hockner M., Panneerselvam A., Levitt J., Bouillard J. S., Taniguchi S., Dailey L. A., Khanbeigi R. A., Rosca E. V., Thanou M., Suhling K., Zayats A. V., Green M.: Nature Nanotechnology, 8, 57 (2013).
16. Maboeta M. S., Reinecke S. A., Reinecke A. J.: Environmental Research, 96, 95 (2004).