Structural attributes and binding role of HIV-1 exterior envelope gp120

Zbynek Heger, Natalia Cernei, Ondrej Zitka, Vojtech Adam, Rene Kizek


HIV/AIDS is a global deadly disease. Since its discovery in 1983, the Human Immunodeficiency Virus has sustained one of the major pandemics in the history of mankind [1]. Human immunodeficiency virus type 1 (HIV-1) is characterized by extensive genetic variability, as a consequence of high replication and mutation rates and frequent recombination [2,3]. The most up-to-date estimates that more than 30 million people are now living with HIV-1 infection, most of them in sub-Saharan Africa [4]. The virus depends on the physiological state of its target cells for efficient replication, and, in turn, viral infection perturbs the cellular state significantly. A cure for HIV is still urgently needed and has become a global research priority. A unique cohort of HIV-infected individuals who spontaneously control HIV exists, and these are known as ‚elite controllers‘ [5]. These subjects represent a model with long term control of viral replication and HIV remission, based on natural CD4+ T cells depletion. CD4+ T cells play important role particularly in the adaptive immune system by releasing T cell cytokines, thus helping to suppress or regulate immune responses [6]. CD4+ T cells are a primary target of HIV viral entry, because of interaction between HIV exterior envelope glycoprotein 120 (gp120) and CD4 receptor found on the surface of CD4+ T cells [7,8]. Thereof, perfect understanding of interaction between gp120 and CD4 receptors could lead to development of novel chemical substances with ability to block this interaction and inhibit the viral entry into the host cells. The present paper focuses on description of role of gp120 in entry into the host cells through interaction with their CD4 receptors and further summarizes recent knowledge in development of HIV vaccines based on interaction with gp120.

1. De Crignis, E.; Mahmoudi, T., HIV Eradication: Combinatorial Approaches to Activate Latent Viruses. Viruses-Basel 2014, 6, 4581-4608.
2. Hemelaar, J.; Gouws, E.; Ghys, P.D.; Osmanov, S., Global trends in molecular epidemiology of HIV-1 during 2000-2007. Aids 2011, 25, 679-689.
3. Robertson, D.L.; Anderson, J.P.; Bradac, J.A.; Carr, J.K.; Foley, B.; Funkhouser, R.K.; Gao, F.; Hahn, B.H.; Kalish, M.L.; Kuiken, C., et al., HIV-1 nomenclature proposal. Science 2000, 288, 55-57.
4. Cohen, M.S.; Hellmann, N.; Levy, J.A.; DeCock, K.; Lange, J., The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. Journal of Clinical Investigation 2008, 118, 1244-1254.
5. Cockerham, L.R.; Hatano, H., Elite control of HIV: is this the right model for a functional cure? Trends in Microbiology 2015, 23, 71-75.
6. Zhu, J.F.; Paul, W.E., CD4 T cells: fates, functions, and faults. Blood 2008, 112, 1557-1569.
7. Ruffin, N.; Brezar, V.; Ayinde, D.; Lefebvre, C.; Schulze Zur Wiesch, J.; van Lunzen, J.; Bockhorn, M.; Schwartz, O.; Hocini, H.; Lelievre, J.-D., et al., Low SAMHD1 expression following T-cell activation and proliferation renders CD4+ T cells susceptible to HIV-1. AIDS (London, England) 2015, 29, 519-530.
8. Costiniuk, C.T.; Jenabian, M.A., Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. Journal of General Virology 2014, 95, 2346-2355.
9. Turner, B.G.; Summers, M.F., Structural biology of HIV. Journal of Molecular Biology 1999, 285, 1-32.
10. Willey, R.L.; Bonifacino, J.S.; Potts, B.J.; Martin, M.A.; Klausner, R.D., Biosynthesis, cleavage, and degradation of the human immunodeficiency virus-1 envelope glycoprotein-gp 160. Proceedings of the National Academy of Sciences of the United States of America 1988, 85, 9580-9584.
11. Stein, B.S.; Engleman, E.G., Intracellular processing of the gp-160 HIV-1 envelope precursor - endoproteolytic cleavage occurs in a cis or medial compartment of the golgi-complex. Journal of Biological Chemistry 1990, 265, 2640-2649.
12. Kwong, P.D.; Wyatt, R.; Robinson, J.; Sweet, R.W.; Sodroski, J.; Hendrickson, W.A., Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998, 393, 648-659.
13. Wyatt, R.; Sodroski, J., The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens. Science 1998, 280, 1884-1888.
14. Kwong, P.D.; Wyatt, R.; Majeed, S.; Robinson, J.; Sweet, R.W.; Sodroski, J.; Hendrickson, W.A., Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 2000, 8, 1329-1339.
15. Arthur, L.O.; Bess, J.W.; Sowder, R.C.; Benveniste, R.E.; Mann, D.L.; Chermann, J.C.; Henderson, L.E., Cellular proteins bound to immunodeficiency viruses - implications for pathogenesis and vaccines. Science 1992, 258, 1935-1938.
16. Massiah, M.A.; Worthylake, D.; Christensen, A.M.; Sundquist, W.I.; Hill, C.P.; Summers, M.F., Comparison of the NMR and X-ray structures of the HIV-1 matrix protein: Evidence for conformational changes during viral assembly. Protein Science 1996, 5, 2391-2398.
17. Okumura, A.; Alce, T.; Lubyova, B.; Ezelle, H.; Strebel, K.; Pitha, P.M., HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 2008, 373, 85-97.
18. Cernei, N.; Heger, Z.; Kopel, P.; Milosavljevic, V.; Kominkova, M.; Moulick, A.; Zitka, O.; Trnkova, L.; Adam, V.; Kizek, R., Spectroscopic and Electrochemical Characterization of CD4 Binding Site of HIV-1 Exterior Envelope gp120. International Journal of Electrochemical Science 2014, 9, 3386-3397.
19. Li, M., Proteomics in the investigation of HIV-1 interactions with host proteins. Proteomics Clinical Applications 2015, 9, 221-234.
20. Mohammadi, P.; Ciuffi, A.; Beerenwinkel, N., Dynamic models of viral replication and latency. Current Opinion in Hiv and Aids 2015, 10, 90-95.
21. Wyatt, R.; Kwong, P.D.; Desjardins, E.; Sweet, R.W.; Robinson, J.; Hendrickson, W.A.; Sodroski, J.G., The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 1998, 393, 705-711.
22. Dewar, R.L.; Vasudevachari, M.B.; Natarajan, V.; Salzman, N.P., Biosynthesis and processing of human immunodeficiency virus type-1 envelope glycoproteins - effects of monensin on glycosylation and transport. Journal of Virology 1989, 63, 2452-2456.
23. Ward, A.B.; Wilson, I.A., Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends in Biochemical Sciences 2015, 40, 101-107.
24. Sundaravaradan, V.; Das, S.R.; Ramakrishnan, R.; Sehgal, S.; Gopalan, S.; Ahmad, N.; Jameel, S., Role of HIV-I subtype C envelope V3 to V5 regions in viral entry, coreceptor utilization and replication efficiency in primary T-lymphocytes and monocyte-derived macrophages. Virology Journal 2007, 4.
25. Douagi, I.; Forsell, M.N.E.; Sundling, C.; O‘Dell, S.; Feng, Y.; Dosenovic, P.; Li, Y.X.; Seder, R.; Lore, K.; Mascola, J.R., et al., Influence of Novel CD4 Binding-Defective HIV-1 Envelope Glycoprotein Immunogens on Neutralizing Antibody and T-Cell Responses in Nonhuman Primates. Journal of Virology 2010, 84, 1683-1695.
26. Bernstein, H.B.; Tucker, S.P.; Kar, S.R.; McPherson, S.A.; McPherson, D.T.; Dubay, J.W.; Lebowitz, J.; Compans, R.W.; Hunter, E., Oligomerization of the hydrophobic heptad repeat of gp41. Journal of Virology 1995, 69, 2745-2750.
27. Zafiropoulos, A.; Baritaki, S.; Vlata, Z.; Spandidos, D.A.; Krambovitis, E., Dys-regulation of effector CD4+T cell function by the V3 domain of the HIV-1 gp120 during antigen presentation. Biochemical and Biophysical Research Communications 2001, 284, 875-879.
28. Weissenhorn, W.; Dessen, A.; Harrison, S.C.; Skehel, J.J.; Wiley, D.C., Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997, 387, 426-430.
29. Wild, C.T.; Shugars, D.C.; Greenwell, T.K.; McDanal, C.B.; Matthews, T.J., Peptides corresponding to a predictive alpha-helical domain of human-immunodeficiency-virus type-1 gp41 are potent inhibitors of virus-infection. Proceedings of the National Academy of Sciences of the United States of America 1994, 91, 9770-9774.
30. Lu, M.; Blacklow, S.C.; Kim, P.S., A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nature Structural Biology 1995, 2, 1075-1082.
31. Burton, D.R.; Pyati, J.; Koduri, R.; Sharp, S.J.; Thornton, G.B.; Parren, P.; Sawyer, L.S.W.; Hendry, R.M.; Dunlop, N.; Nara, P.L., et al., Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal-antibody. Science 1994, 266, 1024-1027.
32. Grundner, C.; Mirzabekov, T.; Sodroski, J.; Wyatt, R., Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins. Journal of Virology 2002, 76, 3511-3521.
33. Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E., et al., Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. New England Journal of Medicine 2009, 361, 2209-2220.
34. Kim, J.H.; Excler, J.L.; Michael, N.L., Lessons from the RV144 Thai Phase III HIV-1 Vaccine Trial and the Search for Correlates of Protection. Annual Review of Medicine 2015, 66, 423-437.
35. Liao, H.X.; Bonsignori, M.; Alam, S.M.; McLellan, J.S.; Tomaras, G.D.; Moody, M.A.; Kozink, D.M.; Hwang, K.K.; Chen, X.; Tsao, C.Y., et al., Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity 2013, 38, 176-186.

pdfPDF