Application of nanotechnologies in the diagnostic of human papillomavirus

Dagmar Chudobova, Kristyna Cihalova, Ana Maria Jimenez Jimenez, Branislav Ruttkay-Nedecky, Radek Vesely, Vojtech Adam, Rene Kizek


The human papillomaviruses (HPV) are a diverse group of DNA virus belonging to the family of the Papillomaviridae and represents one of the most common infections of sexual transmission. Papillomaviruses cannot be cultivated on tissue culture, so the DNA diagnostics is the main and accurate method for the detection of clinical specimens. Commonly used methods in laboratories include the use of the polymerase chain reaction. Conventional methods often do not specify the types of HPV and only distinguish the presence of high-risk or low-risk type of HPV. In recent decades, the number of techniques is based on diagnostic of human papillomavirus using nanotechnologies, such as nanoparticles, their modification, magnetic separation or antisense therapy. In the focus of this research is the preparation of a composite material, consisiting of graphene oxide and nanoparticles of zinc oxide (ZnO), silver phhosphate (Ag3PO4) and silver. Graphene oxide was prepared by Hummers method, involving the oxidation of graphite flake in sulfuric acid with permanganate with subsequent addition of the necessary components for the formation of metal nanoparticles. Physicochemical methods are considered for their characterisation. The size of nanoparticles ranges from 50 – 200 nm. Subsequently, the antibacterial effect of composites was tested by disk method on bacterial cultures of S.aureus, E.coli, methicilin-resistant S. aureus (MRSA). Selenium nanoparticles exhibit the highest antibacterial activity from selected nanoparticles containing graphene oxide composite with an inhibitory zone with the size 5 ± 1 mm. Silver nanoparticles display also a distinguishable antibacterial effect with inhibition zones of 2 ± 1 mm. Graphene oxide which is modified by zinc oxide nanoparticles shows no inhibitory effect. The obtained results show suitability of the prepared composite materials as candidates for alternative antimicrobialmaterials.

1. Shigehara K, Sasagawa T, Namiki M. Human papillomavirus infection and pathogenesis in urothelial cells: A mini-review. Journal of Infection and Chemotherapy. [Review]. 2014 Dec;20(12):741-7.
2. Ruttkay-Nedecky B, Jimenez AMJ, Nejdl L, Chudobova D, Gumulec J, Masarik M, et al. Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins. International Journal of Oncology. [Review]. 2013 Dec;43(6):1754-62.
3. Malek RS, Goellner JR, Smith TF, Espy MJ, Cupp MR. Human papillomavirus infection and intraepithelial, in-situ, and invasive-carcinoma of penis. Urology. [Article]. 1993 Aug;42(2):159-70.
4. Bednar M, Frankova V, Schindler J, Soucek A, Vavra J. Virology. Medical Microbiology. 1996:367-48.
5. Castle PE, Schmeler KM. HPV vaccination: for women of all ages? Lancet. [Editorial Material]. 2015 Dec;384(9961):2178-80.
6. Porsova M, Pors J, Kolombo I, Pabista R. Human papillomavirus and its clinical manifestations. Urology for praxis. 2006;6:267-9.
7. Alemany L, Saunier M, Alvarado-Cabrero I, Quiros B, Salmeron J, Shin HR, et al. Human papillomavirus DNA prevalence and type distribution in anal carcinomas worldwide. International Journal of Cancer. [Article]. 2015 Jan;136(1):98-107.
8. Saraiya M, Benard VB, Greek AA, Steinau M, Patel S, Massad LS, et al. Type-specific HPV and Pap test results among low-income, underserved women: providing insights into management strategies. Am J Obstet Gynecol. [Article]. 2014 Oct;211(4).
9. Walker HK, Hall WD, Hurst JW. Clinical Methods: The History, Physical, and Laboratory Examinations. . 3rd ed. Boston: Butterworth Publishers; 1990.
10. Broder S. The Bethesda system for reporting cervical vaginal cytologic diagnoses - report of the 1991 Bethesda workshop. Jama-Journal of the American Medical Association. [Editorial Material]. 1992 Apr;267(14):1892-.
11. Koss LG. The Papanicolaou test for cervical-cancer detection - a triumph and a tragedy. Jama-Journal of the American Medical Association. [Review]. 1989 Feb;261(5):737-43.
12. Sherman ME, Schiffman MH, Lorincz AT, Manos MM, Scott DR, Kurman RJ, et al. Toward objective quality assurance in cervical cytopathology - correlation of cytopathologic diagnoses with detection of high-rsk human papillomavirus types. American Journal of Clinical Pathology. [Article]. 1994 Aug;102(2):182-7. 13. Anttila A, Pukkala E, Soderman B, Kallio M, Nieminen P, Hakama M. Effect of organised screening on cervical cancer incidence and mortality in Finland, 1963-1995: Recent increase in cervical cancer incidence. International Journal of Cancer. [Article]. 1999 Sep;83(1):59-65.
14. Engeland A, Haldorsen T, Tretli S, Hakulinen T, Horte LG, Luostarinen T, et al. Prediction of cancer incidence in the Nordic countries up to the years 2000 and 2010. Apmis. [Article]. 1993;101(SUPPL. 38):1-121.
15. Tachezy R. Molecular dianosis and molecular epidemiology of papillomaviruses. Clinical Microbiology. 1997;1:219.
16. Li XZ, Kim S, Cho W, Lee SY. Optical detection of nanoparticle-enhanced human papillomavirus genotyping microarrays. Biomedical Optics Express. [Article]. 2013 Feb;4(2):187-92.
17. Ricco R, Meneghello A, Enrichi F. Signal enhancement in DNA microarray using dye doped silica nanoparticles: Application to Human Papilloma Virus (HPV) detection. Biosensors & Bioelectronics. [Article]. 2011 Jan;26(5):2761-5.
18. Bilitewski U. DNA Microarrays: An Introduction to the Technology. In: Bilitewski U, editor. Methods in Molecular Biology: Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512-1165 USA; 2009. p. 1-14.
19. Bryant D, Rai N, Rowlands G, Hibbitts S, Jones J, Tristram A, et al. Human Papillomavirus Type Distribution in Vulval Intraepithelial Neoplasia Determined Using PapilloCheck DNA Microarray. J Med Virol. [Article]. 2011 Aug;83(8):1358-61.
20. Blab GA, Cognet L, Berciaud S, Alexandre I, Husar D, Remacle J, et al. Optical readout of gold nanoparticle-based DNA microarrays without silver enhancement. Biophysical Journal. [Letter]. 2006 Jan;90(1):L13-L5.
21. Haes AJ, Van Duyne RP. A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society. [Article]. 2002 Sep;124(35):10596-604.
22. Tansil NC, Gao ZQ. Nanoparticles in biomolecular detection. Nano Today. [Review]. 2006 Feb;1(1):28-37.
23. Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science. [Article]. 2000 Sep;289(5485):1757-60.
24. Piao JY, Park EH, Choi K, Quan B, Kang DH, Park PY, et al. Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip. Talanta. [Article]. 2009 Dec;80(2):967-73.
25. Neuzil P, Zhang CY, Pipper J, Oh S, Zhuo L. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res. [Article]. 2006;34(11).
26. Gransee R, Schneider T, Elyorgun D, Strobach X, Schunck T, Gatscha T, et al. Fluorescence detection in Lab-on-a-chip systems using ultrafast nucleic acid amplification methods. Smart Biomedical and Physiological Sensor Technology Xi. [Proceedings Paper]. 2014;9107.
27. Lounsbury JA, Landers JP. Ultrafast Amplification of DNA on Plastic Microdevices for Forensic Short Tandem Repeat Analysis. Journal of Forensic Sciences. [Article]. 2013 Jul;58(4):866-74.
28. Lee SH, Kim SW, Lee S, Kim E, Kim DJ, Park S, et al. Rapid Detection of Mycobacterium tuberculosis Using a Novel Ultrafast Chip-Type Real-Time Polymerase Chain Reaction System. Chest. [Article]. 2014 Nov;146(5):1319-26.
29. Ghosh SK, Choudhury B, Hansa J, Mondal R, Singh M, Duttagupta S, et al. Human Papillomavirus Testing for Suspected Cervical Cancer Patients from Southern Assam by Fast-PCR. Asian Pac J Cancer Prev. [Article]. 2011;12(3):749-51.
30. 임희영. Development of Novel Rapid Detection Method for Deformed Wing Virus (DWV) using Ultra-Fast High-Performance PCR (UF-HP PCR). Journal of Apiculture. [research-article]. 2013;28(4):237-44.
31. Tang DP, Yu YL, Niessner R, Miro M, Knopp D. Magnetic bead-based fluorescence immunoassay for aflatoxin B-1 in food using biofunctionalized rhodamine B-doped silica nanoparticles. Analyst. [Article]. 2010;135(10):2661-7.
32. Xiang DS, Zeng GP, He ZK. Magnetic microparticle-based multiplexed DNA detection with biobarcoded quantum dot probes. Biosensors & Bioelectronics. [Article]. 2011 Jul;26(11):4405-10.
33. Nguyen C, Crawford KL, Lu BM, inventors; Affymetrix Inc (Affy-C), assignee. Device for processing magnetic microparticles for detection of presence of nucleic acids/protein of interest in sample e.g. cell lysate, comprises support frame, securing features, magnets, identification features, and gripping features patent US2012034703-A1. US2012034703-A1 09 Feb 2012 G01N-001/00 201213.
34. Maillet S, Sice J, Payne J. A new HCV antibody assay utilizing magnetic microparticles and chemiluminescence on the fully automated ACCESS Immunoassay System. Abstracts of the General Meeting of the American Society for Microbiology. [Meeting]. 1993;93(0):448.
35. Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H. A reagentless biosensing assembly based on quantum dot-donor Forster resonance energy transfer. Advanced Materials. [Article]. 2005 Oct;17(20):2450-+.
36. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. [Review]. 2005 Jun;4(6):435-46.
37. Stephenson ML, Zamecnik PC. Inhibition of Rous-sarcoma viral-RNA translation by a specific oligodeoxyribonucleotide. Proceedings of the National Academy of Sciences of the United States of America. [Article]. 1978;75(1):285-8.
38. Marquez-Gutierrez MA, Benitez-Hess ML, DiPaolo JA, Alvarez-Salas LM. Effect of combined antisense oligodeoxynucleotides directed against the human papillomavirus type 16 on cervical carcinoma cells. Archives of Medical Research. [Article]. 2007 Oct;38(7):730-8.

pdfPDF