SARS Coronavirus: Minireview

Simona Dostalova, Marketa Vaculovicova, Rene Kizek


In 2002, an outbreak of respiratory illness emerged from China, later named as a Severe Acute Respiratory Syndrome [1,2]. It was the first previously unknown pandemic transmissible disease of 21st century [3]. The disease spread quickly throughout the world (affecting 32 countries) with more than 8500 individuals infected and 900 dead (case fatality rate of 10%). It can be transmitted via respiratory droplets, direct contact or airborne processes [4]. The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a virus belonging to the Betacoronavirus genus from family Coronaviridae [5]. Coronaviruses are closely related to influenza viruses and both SARS and MERS (Middle East Respiratory Syndrome) are more lethal than other human coronaviruses [2]. SARS-CoV nucleocapsid has a helical symmetry; it is enveloped with a positive sense, non-segmented, capped and poly-adenylated RNA genome the size of 30 kb [2]. SARS-CoV is a zoonotic virus, it was transmitted to humans from its natural reservoir horseshoe bats (of the Rhinolophus genus) after still undefined mutations, possibly through intermediate hosts such as palm civets (Paguna larvata) from live animal market [3]. Since 2004, there were no new cases of SARS-CoV in humans, although a SARS-like coronavirus strain able to infect humans can still be found in Chinese bats (named as a SL-CoV-W1V1) [6]. It uses the human angiotensin converting enzyme II receptor to enter the cells, thus it does not require any mutations or intermediate hosts to infect human cells [7]. Moreover, the recent emergence of MERS in Middle East shows that coronaviruses are still a threat to worldwide population.

Drosten, C.; Gunther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967-1976.
2. Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Penaranda, S.; Bankamp, B.; Maher, K.; Chen, M.H., et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300, 1394-1399.
3. Wang, L.F.; Eaton, B.T. Bats, civets and the emergence of sars. Curr.Top.Microbiol.Immunol. 2007, 315, 325-344.
4. Chen, Y.M.A.; Liang, S.Y.; Shih, Y.P.; Chen, C.Y.; Lee, Y.M.; Chang, L.; Jung, S.Y.; Ho, M.S.; Liang, K.Y.; Chen, H.Y., et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in taiwan in 2003. J. Clin. Microbiol. 2006, 44, 359-365.
5. Martina, B.E.E.; Haagmans, B.L.; Kuiken, T.; Fouchier, R.A.M.; Rimmelzwaan, G.F.; van Amerongen, G.; Peiris, J.S.M.; Lim, W.; Osterhaus, A. Sars virus infection of cats and ferrets. Nature 2003, 425, 915-915.
6. Yang, L.; Wu, Z.Q.; Ren, X.W.; Yang, F.; He, G.M.; Zhang, J.P.; Dong, J.; Sun, L.L.; Zhu, Y.F.; Du, J., et al. Novel sars-like betacoronaviruses in bats, china, 2011. Emerg. Infect. Dis 2013, 19, 989-991.
7. Ge, X.Y.; Li, J.L.; Yang, X.L.; Chmura, A.A.; Zhu, G.J.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C., et al. Isolation and characterization of a bat sars-like coronavirus that uses the ace2 receptor. Nature 2013, 503, 535-538.
8. Sevajol, M.; Subissi, L.; Decroly, E.; Canard, B.; Imbert, I. Insights into rna synthesis, capping, and proofreading mechanisms of sars-coronavirus. Virus Res. 2014, 194, 90-99.
9. Chang, M.S.; Lu, Y.T.; Ho, S.T.; Wu, C.C.; Wei, T.Y.; Chen, C.J.; Hsu, Y.T.; Chu, P.C.; Chen, C.H.; Chu, J.M., et al. Antibody detection of sars-cov spike and nucleocapsid protein. Biochem. Biophys. Res. Commun. 2004, 314, 931-936.
10. Thiel, V.; Ivanov, K.A.; Putics, A.; Hertzig, T.; Schelle, B.; Bayer, S.; Weissbrich, B.; Snijder, E.J.; Rabenau, H.; Doerr, H.W., et al. Mechanisms and enzymes involved in sars coronavirus genome expression. J. Gen. Virol. 2003, 84, 2305-2315.
11. Snijder, E.J.; Bredenbeek, P.J.; Dobbe, J.C.; Thiel, V.; Ziebuhr, J.; Poon, L.L.M.; Guan, Y.; Rozanov, M.; Spaan, W.J.M.; Gorbalenya, A.E. Unique and conserved features of genome and proteome of sars-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003, 331, 991-1004.
12. Pasternak, A.O.; Spaan, W.J.M.; Snijder, E.J. Nidovirus transcription: How to make sense ... ? J. Gen. Virol. 2006, 87, 1403-1421.
13. Minskaia, E.; Hertzig, T.; Gorbalenya, A.E.; Campanacci, V.; Cambillau, C.; Canard, B.; Ziebuhr, J. Discovery of an rna virus 3 ‚-> 5 ‚ exoribonuclease that is critically involved in coronavirus rna synthesis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5108-5113.
14. Ivanov, K.A.; Hertzig, T.; Rozanov, M.; Bayer, S.; Thiel, V.; Gorbalenya, A.E.; Ziebuhr, J. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 12694-12699.
15. Tseng, Y.T.; Wang, S.M.; Huang, K.J.; Wang, C.T. Sars-cov envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production. J. Biomed. Sci. 2014, 21, 1-11.
16. Kim, H.; Hong, Y.; Shibayama, K.; Suzuki, Y.; Wakamiya, N.; Kim, Y.U. Functional analysis of the receptor binding domain of sars coronavirus s1 region and its monoclonal antibody. Genes Genom. 2014, 36, 387-397.
17. Li, W.H.; Moore, M.J.; Vasilieva, N.; Sui, J.H.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the sars coronavirus. Nature 2003, 426, 450-454.
18. Wong, S.K.; Li, W.H.; Moore, M.J.; Choe, H.; Farzan, M. A 193-amino acid fragment of the sars coronavirus s protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 2004, 279, 3197-3201.
19. Aydin, H.; Al-Khooly, D.; Lee, J.E. Influence of hydrophobic and electrostatic residues on sars-coronavirus s2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design. Protein Sci. 2014, 23, 603-617.
20. Pervushin, K.; Tan, E.; Parthasarathy, K.; Lin, X.; Jiang, F.L.; Yu, D.J.; Vararattanavech, A.; Soong, T.W.; Liu, D.X.; Torres, J. Structure and inhibition of the sars coronavirus envelope protein ion channel. PLoS Pathog. 2009, 5, 1-14.
21. Ortego, J.; Ceriani, J.E.; Patino, C.; Plana, J.; Enjuanes, L. Absence of e protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology 2007, 368, 296-308.
22. Nieto-Torres, J.L.; DeDiego, M.L.; Alvarez, E.; Jimenez-Guardeno, J.M.; Regla-Nava, J.A.; Llorente, M.; Kremer, L.; Shuo, S.; Enjuanes, L. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011, 415, 69-82.
23. Ruch, T.R.; Machamer, C.E. The hydrophobic domain of infectious bronchitis virus e protein alters the host secretory pathway and is important for release of infectious virus. J. Virol. 2011, 85, 675-685.
24. Jimenez-Guardeno, J.M.; Nieto-Torres, J.L.; DeDiego, M.L.; Regla-Nava, J.A.; Fernandez-Delgado, R.; Castano-Rodriguez, C.; Enjuanes, L. The pdz-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 2014, 10, 1-5.
25. Chen, Z.L.; Pei, D.C.; Jiang, L.X.; Song, Y.J.; Wang, J.; Wang, H.X.; Zhou, D.S.; Zhai, J.H.; Du, Z.M.; Li, B., et al. Antigenicity analysis of different regions of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Clin. Chem. 2004, 50, 988-995.
26. de Haan, C.A.M.; Rottier, P.J.M. Molecular interactions in the assembly of coronaviruses. In Virus structure and assembly, Roy, P., Ed. Elsevier Academic Press Inc: San Diego, 2005; Vol. 64, pp 165-230.
27. Hurst, K.R.; Kuo, L.L.; Koetzner, C.A.; Ye, R.; Hsuej, B.; Masters, P.S. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J. Virol. 2005, 79, 13285-13297.
28. Hsieh, P.K.; Chang, S.C.; Huang, C.C.; Lee, T.T.; Hsiao, C.W.; Kou, Y.H.; Chen, I.Y.; Chang, C.K.; Huang, T.H.; Chang, M.F. Assembly of severe acute respiratory syndrome coronavirus rna packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 2005, 79, 13848-13855.
29. Liu, D.X.; Fung, T.S.; Chong, K.K.L.; Shukla, A.; Hilgenfeld, R. Accessory proteins of sars-cov and other coronaviruses. Antiviral Res. 2014, 109, 97-109.
30. Narayanan, K.; Huang, C.; Makino, S. Sars coronavirus accessory proteins. Virus Res. 2008, 133, 113-121.
31. Frieman, M.; Yount, B.; Heise, M.; Kopecky-Bromberg, S.A.; Palese, P.; Baric, R.S. Severe acute respiratory syndrome coronavirus orf6 antagonizes stat1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/golgi membrane. J. Virol. 2007, 81, 9812-9824.
32. Yount, B.; Roberts, R.S.; Sims, A.C.; Deming, D.; Frieman, M.B.; Sparks, J.; Denison, M.R.; Davis, N.; Baric, R.S. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 2005, 79, 14909-14922.
33. Yuan, X.L.; Yao, Z.Y.; Wu, J.; Zhou, Y.S.; Shan, Y.J.; Dong, B.; Zhao, Z.H.; Hua, P.; Chen, J.P.; Cong, Y.W. G1 phase cell cycle arrest induced by sars-cov 3a protein via the cyclin d3/prb pathway. Am. J. Respir. Cell Mol. Biol. 2007, 37, 9-19.
34. Lu, W.; Zheng, B.J.; Xu, K.; Schwarz, W.; Du, L.Y.; Wong, C.K.L.; Chen, J.D.; Duan, S.M.; Deubel, V.; Sun, B. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12540-12545.
35. Chan, C.M.; Tsoi, H.; Chan, W.M.; Zhai, S.Y.; Wong, C.O.; Yao, X.Q.; Chan, W.Y.; Tsui, S.K.W.; Chan, H.Y.E. The ion channel activity of the sars-coronavirus 3a protein is linked to its pro-apoptotic function. Int. J. Biochem. Cell Biol. 2009, 41, 2232-2239.
36. Minakshi, R.; Padhan, K.; Rehman, S.; Hassan, M.I.; Ahmad, F. The sars coronavirus 3a protein binds calcium in its cytoplasmic domain. Virus Res. 2014, 191, 180-183.
37. Tan, Y.J. The severe acute respiratory syndrome (sars)-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein. Virol. J. 2005, 2, 1-5.
38. Minakshi, R.; Padhan, K. The yxxempty set motif within the severe acute respiratory syndrome coronavirus (sars-cov) 3a protein is crucial for its intracellular transport. Virol. J. 2014, 11, 1-10.
39. Zielecki, F.; Weber, M.; Eickmann, M.; Spiegelberg, L.; Zaki, A.M.; Matrosovich, M.; Becker, S.; Weber, F. Human cell tropism and innate immune system interactions of human respiratory coronavirus emc compared to those of severe acute respiratory syndrome coronavirus. J. Virol. 2013, 87, 5300-5304.
40. Clementz, M.A.; Chen, Z.B.; Banach, B.S.; Wang, Y.H.; Sun, L.; Ratia, K.; Baez-Santos, Y.M.; Wang, J.; Takayama, J.; Ghosh, A.K., et al. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol. 2010, 84, 4619-4629.
41. Chen, X.J.; Yang, X.X.; Zheng, Y.; Yang, Y.D.; Xing, Y.L.; Chen, Z.B. Sars coronavirus papain-like protease inhibits the type i interferon signaling pathway through interaction with the sting-traf3-tbk1 complex. Protein Cell 2014, 5, 369-381.
42. Ratia, K.; Kilianski, A.; Baez-Santos, Y.M.; Baker, S.C.; Mesecar, A. Structural basis for the ubiquitin-linkage specificity and deisgylating activity of sars-cov papain-like protease. PLoS Pathog. 2014, 10, 1-15.
43. Frieman, M.; Ratia, K.; Johnston, R.E.; Mesecar, A.D.; Baric, R.S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of irf3 and nf-kappa b signaling. J. Virol. 2009, 83, 6689-6705.
44. Matthews, K.; Schafer, A.; Pham, A.; Frieman, M. The sars coronavirus papain like protease can inhibit irf3 at a post activation step that requires deubiquitination activity. Virol. J. 2014, 11, 1-12.
45. Mahony, J.B.; Richardson, S. Molecular diagnosis of severe acute respiratory syndrome - the state of the art. J. Mol. Diagn. 2005, 7, 551-559.
46. Peiris, J.S.M.; Poon, L.L.M. Detection of sars coronavirus in humans and animals by conventional and quantitative (real time) reverse transcription polymerase chain reactions. In Methods in molecular biology, Cavanagh, D., Ed. Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512-1165 USA: 2008; Vol. 454, pp 61-72.
47. Hadjinicolaou, A.V.; Farcas, G.A.; Demetriou, V.L.; Mazzulli, T.; Poutanen, S.M.; Willey, B.M.; Low, D.E.; Butany, J.; Asa, S.L.; Kain, K.C., et al. Development of a molecular-beacon-based multi-allelic real-time rt-pcr assay for the detection of human coronavirus causing severe acute respiratory syndrome (sars-cov): A general methodology for detecting rapidly mutating viruses. Arch. Virol. 2011, 156, 671-680.
48. Poon, L.L.M.; Chan, K.H.; Wong, O.K.; Yam, W.C.; Yuen, K.Y.; Guan, Y.; Lo, Y.M.D.; Peiris, J.S.M. Early diagnosis of sars coronavirus infection by real time rt-pcr. J. Clin. Virol. 2003, 28, 233-238.
49. Keightley, M.C.; Sillekens, P.; Schippers, W.; Rinaldo, C.; St George, K. Real-time nasba detection of sars-associated coronavirus and comparison with real-time reverse transcription-pcr. J. Med. Virol. 2005, 77, 602-608.
50. Kan, B.; Wang, M.; Jing, H.Q.; Xu, H.F.; Jiang, X.G.; Yan, M.Y.; Liang, W.L.; Zheng, H.; Wan, K.L.; Liu, Q.Y., et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 2005, 79, 11892-11900.
51. Guo, X.; Geng, P.; Wang, Q.; Cao, B.Y.; Liu, B. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the sars coronavirus. J. Microbiol. Biotechnol. 2014, 24, 1445-1454.
52. Sunwoo, H.H.; Palaniyappan, A.; Ganguly, A.; Bhatnagar, P.K.; Das, D.; El-Kadi, A.O.S.; Suresh, M.R. Quantitative and sensitive detection of the sars-cov spike protein using bispecific monoclonal antibody-based enzyme-linked immunoassay. J. Virol. Methods 2013, 187, 72-78.
53. Roh, C.; Jo, S.K. Quantitative and sensitive detection of sars coronavirus nucleocapsid protein using quantum dots-conjugated rna aptamer on chip. J. Chem. Technol. Biotechnol. 2011, 86, 1475-1479.
54. Barnett, S.W.; Burke, B.; Sun, Y.; Kan, E.; Legg, H.; Lian, Y.; Bost, K.; Zhou, F.M.; Goodsell, A.; zur Megede, J., et al. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in mf59 adjuvant. J. Virol. 2010, 84, 5975-5985.
55. Du, L.Y.; Zhang, X.J.; Liu, J.X.; Jiang, S.B. Protocol for recombinant rbd-based sars vaccines: Protein preparation, animal vaccination and neutralization detection. J. Vis. Exp. 2011, 1-3.
56. Greenough, T.C.; Babcock, G.J.; Roberts, A.; Hernandez, H.J.; Thomas, W.D.; Coccia, J.A.; Graziano, R.F.; Srinivasan, M.; Lowy, I.; Finberg, R.W., et al. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J. Infect. Dis. 2005, 191, 507-514.
57. Yasui, F.; Kohara, M.; Kitabatake, M.; Nishiwaki, T.; Fujii, H.; Tateno, C.; Yoneda, M.; Morita, K.; Matsushima, K.; Koyasu, S., et al. Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected sars coronavirus. Virology 2014, 454, 157-168.
58. Olsen, C.W.; Corapi, W.V.; Ngichabe, C.K.; Baines, J.D.; Scott, F.W. Monoclonal-antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages J. Virol. 1992, 66, 956-965.
59. Wang, S.F.; Tseng, S.P.; Yen, C.H.; Yang, J.Y.; Tsao, C.H.; Shen, C.W.; Chen, K.H.; Liu, F.T.; Liu, W.T.; Chen, Y.M.A., et al. Antibody-dependent sars coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 2014, 451, 208-214.
60. Tirado, S.M.C.; Yoon, K.J. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003, 16, 69-86.
61. De Diego, M.L.; Nieto-Torres, J.L.; Jimenez-Guardeno, J.M.; Regla-Nava, J.A.; Castano-Rodriguez, C.; Fernandez-Delgado, R.; Usera, F.; Enjuanes, L. Coronavirus virulence genes with main focus on sars-cov envelope gene. Virus Res. 2014, 194, 124-137.
62. Wong, K.B.; Wan, D.C.C.; Chow, H.F. Substrate specificity and rational design of peptidomimetic inhibitors for sars coronavirus main protease. Hong Kong medical journal = Xianggang yi xue za zhi / Hong Kong Academy of Medicine 2014, 20 Suppl 4, 18-21.

pdfPDF