Vladimir Pekarik
Varies viral envelope proteins are formed by trimeric modules that are highly stable while anchored through the transmembrane domain in the virus membrane. Unfortunately, to raise vaccines against the whole viruses could lead to the production of antibodies against hijacked cellular proteins that can cause adverse effects. Therefore, pure protein preparations are used for vaccines production. It was found that the use of monomeric immunogens is insufficient in induction of neutralising antibodies. Protective antibodies were more often produced when trimeric ENV proteins were used. Here, we describe technical aspects of ENV proteins processing in host cells, the way to construct stable trimeric immunogens, and recent progress with construction of soluble trimers of ENV from Ebola, HIV, rabies, and influenza viruses.
1. Smith, R.A.; Baglioni, C. The active form of tumor
necrosis factor is a trimer. J Biol Chem 1987, 262,
6951-6954.
2. Mahmood, N.; Hay, A.J. An elisa utilizing
immobilised snowdrop lectin gna for the detection
of envelope glycoproteins of hiv and siv. J Immunol
Methods 1992, 151, 9-13.
3. Büttner, S.; Koch, B.; Dolnik, O.; Eickmann, M.;
Freiwald, T.; Rudolf, S.; Engel, J.; Becker, S.; Ronco,
C.; Geiger, H. Extracorporeal virus elimination for
the treatment of severe ebola virus disease - first
experience with lectin affinity plasmapheresis.
Blood Purif 2014, 38, 286-291.
4. Hamilton, B.S.; Whittaker, G.R.; Daniel, S.
Influenza virus-mediated membrane fusion:
Determinants of hemagglutinin fusogenic activity
and experimental approaches for assessing virus
fusion. Viruses 2012, 4, 1144-1168.
5. Haim, H.; Salas, I.; Sodroski, J. Proteolytic
processing of the human immunodeficiency
virus envelope glycoprotein precursor decreases
conformational flexibility. J Virol 2013, 87, 1884-
1889.
6. Sanchez, A.; Trappier, S.G.; Mahy, B.W.; Peters,
C.J.; Nichol, S.T. The virion glycoproteins of ebola
viruses are encoded in two reading frames and are
expressed through transcriptional editing. Proc
Natl Acad Sci U S A 1996, 93, 3602-3607.
7. Volchkov, V.E.; Feldmann, H.; Volchkova,
V.A.; Klenk, H.D. Processing of the ebola virus
glycoprotein by the proprotein convertase furin.
Proc Natl Acad Sci U S A 1998, 95, 5762-5767.
8. Markova, S.V.; Golz, S.; Frank, L.A.; Kalthof, B.;
Vysotski, E.S. Cloning and expression of cdna for
a luciferase from the marine copepod metridia
longa. A novel secreted bioluminescent reporter
enzyme. J Biol Chem 2004, 279, 3212-3217.
9. Knappskog, S.; Ravneberg, H.; Gjerdrum, C.;
Trösse, C.; Stern, B.; Pryme, I.F. The level of
synthesis and secretion of gaussia princeps
luciferase in transfected cho cells is heavily
dependent on the choice of signal peptide. J
Biotechnol 2007, 128, 705-715.
10. Berger, J.; Hauber, J.; Hauber, R.; Geiger, R.; Cullen,
B.R. Secreted placental alkaline phosphatase:
A powerful new quantitative indicator of gene
expression in eukaryotic cells. Gene 1988, 66,
1-10.
11. Lowe, M.E. Site-specific mutations in the coohterminus
of placental alkaline phosphatase:
A single amino acid change converts a
phosphatidylinositol-glycan-anchored protein
to a secreted protein. J Cell Biol 1992, 116, 799-
807.
12. Zhang, L.; Leng, Q.; Mixson, A.J. Alteration in the
il-2 signal peptide affects secretion of proteins in
vitro and in vivo. J Gene Med 2005, 7, 354-365.
13. Wang, J.Y.; Song, W.T.; Li, Y.; Chen, W.J.; Yang, D.;
Zhong, G.C.; Zhou, H.Z.; Ren, C.Y.; Yu, H.T.; Ling,
H. Improved expression of secretory and trimeric
proteins in mammalian cells via the introduction of
a new trimer motif and a mutant of the tpa signal
sequence. Appl Microbiol Biotechnol 2011, 91,
731-740.
14. Kober, L.; Zehe, C.; Bode, J. Optimized signal
peptides for the development of high expressing
cho cell lines. Biotechnol Bioeng 2013, 110, 1164-
1173.
15. Haas, J.; Park, E.C.; Seed, B. Codon usage limitation
in the expression of hiv-1 envelope glycoprotein.
Curr Biol 1996, 6, 315-324.
16. Wen, B.; Deng, Y.; Guan, J.; Yan, W.; Wang, Y.; Tan,
expression and secretion of hepatitis c virus
envelope glycoproteins. Acta Biochim Biophys
Sin (Shanghai) 2011, 43, 96-102.
17. Tsuchiya, Y.; Morioka, K.; Taneda, I.; Shirai, J.;
Yoshida, K. Gene design of signal sequence for
the eff ective secretion of recombinant protein
using insect cell. Nucleic Acids Symp Ser (Oxf)
2005, 305-306.
18. Arndt, K.; Fink, G.R. Gcn4 protein, a positive
transcription factor in yeast, binds general control
promoters at all 5‘ tgactc 3‘ sequences. Proc Natl
Acad Sci U S A 1986, 83, 8516-8520.
19. Harbury, P.B.; Kim, P.S.; Alber, T. Crystal structure
of an isoleucine-zipper trimer. Nature 1994, 371,
80-83.
20. Tao, Y.; Strelkov, S.V.; Mesyanzhinov, V.V.;
Rossmann, M.G. Structure of bacteriophage t4
fi britin: A segmented coiled coil and the role of the
c-terminal domain. Structure 1997, 5, 789-798.
21. Turki, I.; Hammami, A.; Kharmachi, H.; Mousli,
M. Engineering of a recombinant trivalent
single-chain variable fragment antibody directed
against rabies virus glycoprotein g with improved
neutralizing potency. Mol Immunol 2014, 57, 66-
73.
22. Ito, T.; Iwamoto, K.; Tsuji, I.; Tsubouchi, H.; Omae,
H.; Sato, T.; Ohba, H.; Kurokawa, T.; Taniyama, Y.;
Shintani, Y. Trimerization of murine tnf ligand
family member light increases the cytotoxic
activity against the fm3a mammary carcinoma
cell line. Appl Microbiol Biotechnol 2011, 90,
1691-1699.
23. Sliepen, K.; van Montfort, T.; Melchers, M.; Isik,
G.; Sanders, R.W. Immunosilencing a highly
immunogenic protein trimerization domain. J
Biol Chem 2015.
24. Mason, J.M.; Arndt, K.M. Coiled coil domains:
Stability, specifi city, and biological implications.
Chembiochem 2004, 5, 170-176.
25. Nielsen, B.B.; Kastrup, J.S.; Rasmussen, H.; Holtet,
T.L.; Graversen, J.H.; Etzerodt, M.; Th øgersen,
H.C.; Larsen, I.K. Crystal structure of tetranectin,
a trimeric plasminogen-binding protein with an
alpha-helical coiled coil. FEBS Lett 1997, 412,
388-396.
26. Allen, J.E.; Ferrini, R.; Dicker, D.T.; Batzer, G.; Chen,
E.; Oltean, D.I.; Lin, B.; Renshaw, M.W.; Kretz-
Rommel, A.; El-Deiry, W.S. Targeting trail death
receptor 4 with trivalent dr4 atrimer complexes.
Mol Cancer Th er 2012, 11, 2087-2095.
27. Byla, P.; Andersen, M.H.; Holtet, T.L.; Jacobsen,
H.; Munch, M.; Gad, H.H.; Thøgersen, H.C.;
Hartmann, R. Selection of a novel and highly
specifi c tumor necrosis factor alpha (tnfalpha)
antagonist: Insight from the crystal structure of
the antagonist-tnfalpha complex. J Biol Chem
2010, 285, 12096-12100.
28. Yang, X.; Lee, J.; Mahony, E.M.; Kwong, P.D.;
Wyatt, R.; Sodroski, J. Highly stable trimers formed
by human immunodefi ciency virus type 1 envelope
glycoproteins fused with the trimeric motif of t4
bacteriophage fi britin. J Virol 2002, 76, 4634-4642.
29. Weldon, W.C.; Wang, B.Z.; Martin, M.P.;
Koutsonanos, D.G.; Skountzou, I.; Compans, R.W.
Enhanced immunogenicity of stabilized trimeric
soluble infl uenza hemagglutinin. PLoS One 2010,
5.
30. Lin, S.C.; Huang, M.H.; Tsou, P.C.; Huang, L.M.;
Chong, P.; Wu, S.C. Recombinant trimeric ha
protein immunogenicity of h5n1 avian infl uenza
viruses and their combined use with inactivated or
adenovirus vaccines. PLoS One 2011, 6, e20052.
31. Hood, C.L.; Abraham, J.; Boyington, J.C.; Leung,
K.; Kwong, P.D.; Nabel, G.J. Biochemical
and structural characterization of cathepsin
l-processed ebola virus glycoprotein: Implications
for viral entry and immunogenicity. J Virol 2010,
84, 2972-2982.
32. Chen, X.; Lu, L.; Qi, Z.; Lu, H.; Wang, J.; Yu, X.;
Chen, Y.; Jiang, S. Novel recombinant engineered
gp41 n-terminal heptad repeat trimers and
their potential as anti-hiv-1 therapeutics or
microbicides. J Biol Chem 2010, 285, 25506-25515.
33. Lu, Y.; Welsh, J.P.; Swartz, J.R. Production
and stabilization of the trimeric influenza
hemagglutinin stem domain for potentially
broadly protective infl uenza vaccines. Proc Natl
Acad Sci U S A 2014, 111, 125-130.
34. Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein
linkers: Property, design and functionality. Adv
Drug Deliv Rev 2013, 65, 1357-1369.
35. Krammer, F.; Margine, I.; Tan, G.S.; Pica, N.; Krause,
J.C.; Palese, P. A carboxy-terminal trimerization
domain stabilizes conformational epitopes
on the stalk domain of soluble recombinant
hemagglutinin substrates. PLoS One 2012, 7,
e43603.
36. Li, J.; Ulitzky, L.; Silberstein, E.; Taylor, D.R.;
Viscidi, R. Immunogenicity and protection
effi cacy of monomeric and trimeric recombinant
sars coronavirus spike protein subunit vaccine
candidates. Viral Immunol 2013, 26, 126-132.
37. Côté, M.; Misasi, J.; Ren, T.; Bruchez, A.; Lee, K.;
Filone, C.M.; Hensley, L.; Li, Q.; Ory, D.; Chandran,
K., et al. Small molecule inhibitors reveal niemannpick
c1 is essential for ebola virus infection. Nature
2011, 477, 344-348.
38. Feng, Y.; McKee, K.; Tran, K.; O‘Dell, S.; Schmidt,
S.D.; Phogat, A.; Forsell, M.N.; Karlsson Hedestam,
G.B.; Mascola, J.R.; Wyatt, R.T. Biochemically
defined hiv-1 envelope glycoprotein variant
immunogens display diff erential binding and
neutralizing specifi cities to the cd4-binding site.
J Biol Chem 2012, 287, 5673-5686.
39. Sissoëff , L.; Mousli, M.; England, P.; Tuff ereau,
C. Stable trimerization of recombinant rabies
virus glycoprotein ectodomain is required for
interaction with the p75ntr receptor. J Gen Virol
2005, 86, 2543-2552.
The