Effects of ionizing radiation on nucleic acids and transcription factors

Jiří Kudr, Zbyněk Heger


Nucleic acids and transcription factors represent biopolymers of vital importance in all living organisms. Their main aim is coding, transcription and translation of genetic information and responsible for complex regulation of these fundamental physiological processes. However ionizing radiation is ubiquitous and played crucial role in evolution probably, long-term exposition to low doses possess broad spectrum of negative effects on health. Interaction of ionizing radiation with nucleic acids and transcription factors result in damage and nonphysiological activation of these polymers. Effects of ionizing radiation on nucleic acids, different kinds of DNA damage and reparation mechanisms are broadly discussed in this work together with effects on important proteins – transcription factors.

1. Dartnell, L.R., Ionizing Radiation and Life. Astrobiology, 2011. 11(6): p. 551-582.
2. Zagorski, Z.P. and E.M. Kornacka, Ionizing Radiation: Friend or Foe of the Origins of Life? Origins of Life and Evolution of Biospheres, 2012. 42(5): p. 503-505.
3. Cucinotta, F.A. and M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncology, 2006. 7(5): p. 431-435.
4. Sherman, M.L., et al., Ionizing-radiation regulates expression of the c-jun protooncogene. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(15): p. 5663-5666.
5. Reisz, J.A., et al., Effects of Ionizing Radiation on Biological Molecules-Mechanisms of Damage and Emerging Methods of Detection. Antioxidants & Redox Signaling, 2014. 21(2): p. 260-292.
6. Popl, M., Instrumentální analýza, 1986. Praha(SNTL): p. 296.
7. Wrixon, A.D., New ICRP recommendations. Journal of Radiological Protection, 2008. 28(2): p. 161-168.
8. Christensen, D.M., C.J. Iddins, and S.L. Sugarman, Ionizing Radiation Injuries and Illnesses. Emergency Medicine Clinics of North America, 2014. 32(1): p. 245-+.
9. L‘Annunziata, M.F. and W. Burkart, -2- - Beta Radiation, in Radioactivity, M.F.L.A. Burkart, Editor 2007, Elsevier Science B.V.: Amsterdam. p. 119-186.
10. L‘Annunziata, M.F. and W. Burkart, -3- - Gammaand X-Radiation — Photons, in Radioactivity, M.F.L.A. Burkart, Editor 2007, Elsevier Science B.V.: Amsterdam. p. 187-252.
11. Jin, H.J. and T.K. Kim, Neutron irradiation performance of Zircaloy-4 under research reactor operating conditions. Annals of Nuclear Energy, 2015. 75: p. 309-315.
12. Dahm, R., Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics, 2008. 122(6): p. 565-581. 13. Watson, J.D. and F.H.C. Crick, Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-738.
14. Roeder, R.G., The role of general initiation factors in transcription by RNA polymerase II. Trends in Biochemical Sciences, 1996. 21(9): p. 327-335.
15. Libermann, T.A. and L.F. Zerbini, Targeting transcription factors for cancer gene therapy. Current Gene Therapy, 2006. 6(1): p. 17-33.
16. Lehnert, B.E. and E.H. Goodwin, Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Research, 1997. 57(11): p. 2164-2171.
17. Hagen, U., Mechanisms of induction and repair of DNA double-strand breaks by ionizing radiation: Some contradictions. Radiation and Environmental Biophysics, 1994. 33(1): p. 45-61.
18. Sachs, R.K., et al., DNA damage caused by ionizingradiation. Mathematical Biosciences, 1992. 112(2): p. 271-303.
19. Teoule, R. and A.M. Duplaa, Gamma-irradiation of Homodeoxyoligonucleotides 32P-labelled at one End: Computer Simulation of the Chain Length Distribution of the Radioactive Fragments. International Journal of Radiation Biology, 1987. 51(3): p. 429-439.
20. Gantchev, T.G. and D.J. Hunting, Modeling the Interactions of the Nucleotide Excision Repair UvrA(2) Dimer with DNA. Biochemistry, 2010. 49(51): p. 10912-10924.
21. Soto-Reyes, E., et al., Role of the alkali labile sites, reactive oxygen species and antioxidants in DNA damage induced by methylated trivalent metabolites of inorganic arsenic. Biometals, 2005. 18(5): p. 493-506.
22. Hoeijmakers, J.H.J., Genome maintenance mechanisms for preventing cancer. Nature, 2001. 411(6835): p. 366-374.
23. Rich, T., R.L. Allen, and A.H. Wyllie, Defying death after DNA damage. Nature, 2000. 407(6805): p. 777-783.
24. Uziel, T., et al., Requirement of the MRN complex for ATM activation by DNA damage. Embo Journal, 2003. 22(20): p. 5612-5621.
25. Reitsema, T.J., et al., Hypertonic saline enhances expression of phosphorylated histone H2AX after irradiation. Radiation Research, 2004. 161(4): p. 402-408.
26. Thompson, L.H., Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: The molecular choreography. Mutation Research- Reviews in Mutation Research, 2012. 751(2): p. 158-246.
27. Nagasawa, H. and J.B. Little, Induction of sister chromatid exchanges by extremely low-doses of alpha-particles. Cancer Research, 1992. 52(22): p. 6394-6396.
28. Sasaki, K., et al., A Simulation Study of the Radiation-Induced Bystander Effect: Modeling with Stochastically Defined Signal Reemission. Computational and Mathematical Methods in Medicine, 2012.
29. Shao, C.L., et al., Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts. Radiation Research, 2003. 160(3): p. 318-323. Journal of Metallomics and Nanotechnologies 2015, 4, 22—29
29
30. Pfeiff er, P., et al., Analysis of Double-Strand Break Repair by Nonhomologous DNA End Joining in Cell-Free Extracts from Mammalian Cells, in Molecular Toxicology Protocols, 2nd Edition, P. Keohavong and S.G. Grant, Editors. 2014, Humana Press Inc: Totowa. p. 565-585.
31. Khanna, K.K. and S.P. Jackson, DNA doublestrand breaks: signaling, repair and the cancer connection. Nature Genetics, 2001. 27(3): p. 247- 254.
32. Bee, L., et al., The Efficiency of Homologous Recombination and Non-Homologous End Joining Systems in Repairing Double-Strand Breaks during Cell Cycle Progression. Plos One, 2013. 8(7).
33. Adler, G., Radiation chemistry of organic compounds. A. J. Swallow. pcrgamon press, New York, 1960. XIII + 380 pp. $15.00. Journal of Polymer Science, 1961. 55(161): p. S5-S5.
34. Garrison, W.M., Reaction-mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews, 1987. 87(2): p. 381-398.
35. Berlett, B.S. and E.R. Stadtman, Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 1997. 272(33): p. 20313- 20316.
36. Levine, R.L., et al., Methionine residues as endogenous antioxidants in proteins. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(26): p. 15036-15040.
37. Criswell, T., et al., Transcription factors activated in mammalian cells aft er clinically relevant doses of ionizing radiation. Oncogene, 2003. 22(37): p. 5813-5827.
38. Yang, C.R., et al., Coordinate modulation of Sp1, NF-kappa B, and p53 in confl uent human malignant melanoma cells aft er ionizing radiation. Faseb Journal, 2000. 14(2): p. 379-390.
39. Lu, X. and D.P. Lane, Differential induction of transcriptionally active p53 following UV or ionizing-radiation - defets in chromosome instability syndromes. Cell, 1993. 75(4): p. 765- 778.
40. Brach, M.A., et al., Ionizing-radiation induces expression and binding-activity of the nuclear factor-kappa-B. Journal of Clinical Investigation, 1991. 88(2): p. 691-695.
41. Liu, J., et al., Tumor suppressor p53 and its mutants in cancer metabolism.
Cancer Letters, 2015. 356(2): p. 197-203. 42. Jimenez, G.S., et al., DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature, 1999. 400(6739): p. 81-83.
43. Abraham, J., D. Spaner, and S. Benchimol, Phosphorylation of p53 protein in response to ionizing radiation occurs at multiple sites in both normal and DNA-PK defi cient cells. Oncogene, 1999. 18(8): p. 1521-1527.
44. Banin, S., et al., Enhanced phosphorylation of p53 by ATN in response to DNA damage. Science, 1998. 281(5383): p. 1674-1677.
45. Fornace, A.J., Jr., et al., Stress-gene induction by low-dose gamma irradiation. Military medicine, 2002. 167(2 Suppl): p. 13-5.
46. Embree-Ku, M., D. Venturini, and K. Boekelheide, Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biology of Reproduction, 2002. 66(5): p. 1456- 1461.
47. Fei, P.W., E.J. Bernhard, and W.S. El-Deiry, Ti ssuespecifi c induction of p53 targets in vivo. Cancer Research, 2002. 62(24): p. 7316-7327.
48. Ghosh, S. and M. Karin, Missing pieces in the NF-kappa B puzzle. Cell, 2002. 109: p. S81-S96.
49. Sahijdak, W.M., et al., Alterations in transcription factor-binding in radioresistant human-melanoma cells aft er ionizing-radiation. Radiation Research, 1994. 138(1): p. S47-S51.
50. Ashburner, B.P., et al., Lack of involvement of ataxia telangiectasia mutated (ATM) in regulation of nuclear factor-kappa B (NF-kappa B) in human diploid fi broblasts. Cancer Research, 1999. 59(21): p. 5456-5460.
51. Chen, X.F., et al., Activation of nuclear factor kappa B in radioresistance of TP53-inactive human keratinocytes. Cancer Research, 2002. 62(4): p. 1213-1221.
52. Baldwin, A.S., Control of oncogenesis and cancer therapy resistance by the transcription factor NFkappa B. Journal of Clinical Investigation, 2001. 107(3): p. 241-246.
53. Safe, S., et al., Transcription factor Sp1, also known as specifi city protein 1 as a therapeutic target. Expert Opinion on Th erapeutic Targets, 2014. 18(7): p. 759-769.
54. Marin, M., et al., Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and diff erentiation. Cell, 1997. 89(4): p. 619-628.
55. Iwahori, S., et al., Enhanced phosphorylation of transcription factor sp1 in response to herpes simplex virus type 1 infection is dependent on the ataxia telangiectasia-mutated protein. Journal of Virology, 2007. 81(18): p. 9653-9664.
56. Chang, W.C. and J.J. Hung, Functional role of post-translational modifications of Sp1 in tumorigenesis. Journal of Biomedical Science, 2012. 19.



pdfPDF