Jiří Kudr, Zbyněk Heger
Nucleic acids and transcription factors represent biopolymers of vital importance in all living organisms. Their main aim is coding, transcription and translation of genetic information and responsible for complex regulation of these fundamental physiological processes. However ionizing radiation is ubiquitous and played crucial role in evolution probably, long-term exposition to low doses possess broad spectrum of negative effects on health. Interaction of ionizing radiation with nucleic acids and transcription factors result in damage and nonphysiological activation of these polymers. Effects of ionizing radiation on nucleic acids, different kinds of DNA damage and reparation mechanisms are broadly discussed in this work together with effects on important proteins – transcription factors.
1. Dartnell, L.R., Ionizing Radiation and Life.
Astrobiology, 2011. 11(6): p. 551-582.
2. Zagorski, Z.P. and E.M. Kornacka, Ionizing
Radiation: Friend or Foe of the Origins of Life?
Origins of Life and Evolution of Biospheres, 2012.
42(5): p. 503-505.
3. Cucinotta, F.A. and M. Durante, Cancer risk from
exposure to galactic cosmic rays: implications
for space exploration by human beings. Lancet
Oncology, 2006. 7(5): p. 431-435.
4. Sherman, M.L., et al., Ionizing-radiation
regulates expression of the c-jun protooncogene.
Proceedings of the National Academy of Sciences
of the United States of America, 1990. 87(15): p.
5663-5666.
5. Reisz, J.A., et al., Effects of Ionizing Radiation on
Biological Molecules-Mechanisms of Damage and
Emerging Methods of Detection. Antioxidants &
Redox Signaling, 2014. 21(2): p. 260-292.
6. Popl, M., Instrumentální analýza, 1986.
Praha(SNTL): p. 296.
7. Wrixon, A.D., New ICRP recommendations.
Journal of Radiological Protection, 2008. 28(2):
p. 161-168.
8. Christensen, D.M., C.J. Iddins, and S.L. Sugarman,
Ionizing Radiation Injuries and Illnesses.
Emergency Medicine Clinics of North America,
2014. 32(1): p. 245-+.
9. L‘Annunziata, M.F. and W. Burkart, -2- - Beta
Radiation, in Radioactivity, M.F.L.A. Burkart,
Editor 2007, Elsevier Science B.V.: Amsterdam.
p. 119-186.
10. L‘Annunziata, M.F. and W. Burkart, -3- - Gammaand
X-Radiation — Photons, in Radioactivity,
M.F.L.A. Burkart, Editor 2007, Elsevier Science
B.V.: Amsterdam. p. 187-252.
11. Jin, H.J. and T.K. Kim, Neutron irradiation
performance of Zircaloy-4 under research reactor
operating conditions. Annals of Nuclear Energy,
2015. 75: p. 309-315.
12. Dahm, R., Discovering DNA: Friedrich Miescher
and the early years of nucleic acid research. Human
Genetics, 2008. 122(6): p. 565-581.
13. Watson, J.D. and F.H.C. Crick, Molecular structure
of nucleic acids - a structure for deoxyribose
nucleic acid. Nature, 1953. 171(4356): p. 737-738.
14. Roeder, R.G., The role of general initiation factors
in transcription by RNA polymerase II. Trends in
Biochemical Sciences, 1996. 21(9): p. 327-335.
15. Libermann, T.A. and L.F. Zerbini, Targeting
transcription factors for cancer gene therapy.
Current Gene Therapy, 2006. 6(1): p. 17-33.
16. Lehnert, B.E. and E.H. Goodwin, Extracellular
factor(s) following exposure to alpha particles
can cause sister chromatid exchanges in normal
human cells. Cancer Research, 1997. 57(11): p.
2164-2171.
17. Hagen, U., Mechanisms of induction and repair
of DNA double-strand breaks by ionizing
radiation: Some contradictions. Radiation and
Environmental Biophysics, 1994. 33(1): p. 45-61.
18. Sachs, R.K., et al., DNA damage caused by ionizingradiation.
Mathematical Biosciences, 1992. 112(2):
p. 271-303.
19. Teoule, R. and A.M. Duplaa, Gamma-irradiation
of Homodeoxyoligonucleotides 32P-labelled
at one End: Computer Simulation of the Chain
Length Distribution of the Radioactive Fragments.
International Journal of Radiation Biology, 1987.
51(3): p. 429-439.
20. Gantchev, T.G. and D.J. Hunting, Modeling the
Interactions of the Nucleotide Excision Repair
UvrA(2) Dimer with DNA. Biochemistry, 2010.
49(51): p. 10912-10924.
21. Soto-Reyes, E., et al., Role of the alkali labile
sites, reactive oxygen species and antioxidants
in DNA damage induced by methylated trivalent
metabolites of inorganic arsenic. Biometals, 2005.
18(5): p. 493-506.
22. Hoeijmakers, J.H.J., Genome maintenance
mechanisms for preventing cancer. Nature, 2001.
411(6835): p. 366-374.
23. Rich, T., R.L. Allen, and A.H. Wyllie, Defying death
after DNA damage. Nature, 2000. 407(6805): p.
777-783.
24. Uziel, T., et al., Requirement of the MRN complex
for ATM activation by DNA damage. Embo Journal,
2003. 22(20): p. 5612-5621.
25. Reitsema, T.J., et al., Hypertonic saline enhances
expression of phosphorylated histone H2AX after
irradiation. Radiation Research, 2004. 161(4): p.
402-408.
26. Thompson, L.H., Recognition, signaling, and
repair of DNA double-strand breaks produced
by ionizing radiation in mammalian cells: The
molecular choreography. Mutation Research-
Reviews in Mutation Research, 2012. 751(2): p.
158-246.
27. Nagasawa, H. and J.B. Little, Induction of sister
chromatid exchanges by extremely low-doses of
alpha-particles. Cancer Research, 1992. 52(22):
p. 6394-6396.
28. Sasaki, K., et al., A Simulation Study of the
Radiation-Induced Bystander Effect: Modeling
with Stochastically Defined Signal Reemission.
Computational and Mathematical Methods in
Medicine, 2012.
29. Shao, C.L., et al., Role of gap junctional intercellular
communication in radiation-induced bystander
effects in human fibroblasts. Radiation Research,
2003. 160(3): p. 318-323.
Journal of Metallomics and Nanotechnologies 2015, 4, 22—29
29
30. Pfeiff er, P., et al., Analysis of Double-Strand Break
Repair by Nonhomologous DNA End Joining in
Cell-Free Extracts from Mammalian Cells, in
Molecular Toxicology Protocols, 2nd Edition,
P. Keohavong and S.G. Grant, Editors. 2014,
Humana Press Inc: Totowa. p. 565-585.
31. Khanna, K.K. and S.P. Jackson, DNA doublestrand
breaks: signaling, repair and the cancer
connection. Nature Genetics, 2001. 27(3): p. 247-
254.
32. Bee, L., et al., The Efficiency of Homologous
Recombination and Non-Homologous End Joining
Systems in Repairing Double-Strand Breaks
during Cell Cycle Progression. Plos One, 2013.
8(7).
33. Adler, G., Radiation chemistry of organic
compounds. A. J. Swallow. pcrgamon press, New
York, 1960. XIII + 380 pp. $15.00. Journal of
Polymer Science, 1961. 55(161): p. S5-S5.
34. Garrison, W.M., Reaction-mechanisms in the
radiolysis of peptides, polypeptides, and proteins.
Chemical Reviews, 1987. 87(2): p. 381-398.
35. Berlett, B.S. and E.R. Stadtman, Protein oxidation
in aging, disease, and oxidative stress. Journal of
Biological Chemistry, 1997. 272(33): p. 20313-
20316.
36. Levine, R.L., et al., Methionine residues as
endogenous antioxidants in proteins. Proceedings
of the National Academy of Sciences of the United
States of America, 1996. 93(26): p. 15036-15040.
37. Criswell, T., et al., Transcription factors activated
in mammalian cells aft er clinically relevant doses
of ionizing radiation. Oncogene, 2003. 22(37): p.
5813-5827.
38. Yang, C.R., et al., Coordinate modulation of
Sp1, NF-kappa B, and p53 in confl uent human
malignant melanoma cells aft er ionizing radiation.
Faseb Journal, 2000. 14(2): p. 379-390.
39. Lu, X. and D.P. Lane, Differential induction
of transcriptionally active p53 following UV
or ionizing-radiation - defets in chromosome
instability syndromes. Cell, 1993. 75(4): p. 765-
778.
40. Brach, M.A., et al., Ionizing-radiation induces
expression and binding-activity of the nuclear
factor-kappa-B. Journal of Clinical Investigation,
1991. 88(2): p. 691-695.
41. Liu, J., et al., Tumor suppressor p53 and its
mutants in cancer metabolism.
Cancer Letters,
2015. 356(2): p. 197-203.
42. Jimenez, G.S., et al., DNA-dependent protein kinase
is not required for the p53-dependent response to
DNA damage. Nature, 1999. 400(6739): p. 81-83.
43. Abraham, J., D. Spaner, and S. Benchimol,
Phosphorylation of p53 protein in response to
ionizing radiation occurs at multiple sites in both
normal and DNA-PK defi cient cells. Oncogene,
1999. 18(8): p. 1521-1527.
44. Banin, S., et al., Enhanced phosphorylation of
p53 by ATN in response to DNA damage. Science,
1998. 281(5383): p. 1674-1677.
45. Fornace, A.J., Jr., et al., Stress-gene induction by
low-dose gamma irradiation. Military medicine,
2002. 167(2 Suppl): p. 13-5.
46. Embree-Ku, M., D. Venturini, and K. Boekelheide,
Fas is involved in the p53-dependent apoptotic
response to ionizing radiation in mouse testis.
Biology of Reproduction, 2002. 66(5): p. 1456-
1461.
47. Fei, P.W., E.J. Bernhard, and W.S. El-Deiry, Ti ssuespecifi
c induction of p53 targets in vivo. Cancer
Research, 2002. 62(24): p. 7316-7327.
48. Ghosh, S. and M. Karin, Missing pieces in the
NF-kappa B puzzle. Cell, 2002. 109: p. S81-S96.
49. Sahijdak, W.M., et al., Alterations in transcription
factor-binding in radioresistant human-melanoma
cells aft er ionizing-radiation. Radiation Research,
1994. 138(1): p. S47-S51.
50. Ashburner, B.P., et al., Lack of involvement of
ataxia telangiectasia mutated (ATM) in regulation
of nuclear factor-kappa B (NF-kappa B) in human
diploid fi broblasts. Cancer Research, 1999. 59(21):
p. 5456-5460.
51. Chen, X.F., et al., Activation of nuclear factor kappa
B in radioresistance of TP53-inactive human
keratinocytes. Cancer Research, 2002. 62(4): p.
1213-1221.
52. Baldwin, A.S., Control of oncogenesis and cancer
therapy resistance by the transcription factor NFkappa
B. Journal of Clinical Investigation, 2001.
107(3): p. 241-246.
53. Safe, S., et al., Transcription factor Sp1, also known
as specifi city protein 1 as a therapeutic target.
Expert Opinion on Th erapeutic Targets, 2014.
18(7): p. 759-769.
54. Marin, M., et al., Transcription factor Sp1 is
essential for early embryonic development but
dispensable for cell growth and diff erentiation.
Cell, 1997. 89(4): p. 619-628.
55. Iwahori, S., et al., Enhanced phosphorylation of
transcription factor sp1 in response to herpes
simplex virus type 1 infection is dependent on the
ataxia telangiectasia-mutated protein. Journal of
Virology, 2007. 81(18): p. 9653-9664.
56. Chang, W.C. and J.J. Hung, Functional role
of post-translational modifications of Sp1 in
tumorigenesis. Journal of Biomedical Science,
2012. 19.