Cell lines as a model system for quantum dots applications

Jan Balvan, Michaela Fojtu, Hana Polanska, Michal Masarik, Rene Kizek


Semiconductor quantum dots (QDs) are nanoparticles in which charge carriers are three dimensionally or quantum confined. The quantum confinement provides size-tunable absorption bands and emission color to QDs. Also, the photoluminescence (PL) of QDs is exceptionally bright and stable, making them potential candidates for biomedical imaging and therapeutic interventions. Although fluorescence imaging and photodynamic therapy (PDT) of cancer have many advantages over imaging using ionizing radiations and chemo and radiation therapies, advancement of PDT is limited due to the poor availability of photostable and NIR fluorophores and photosensitizing (PS) drugs. .

1. Biju, V.; Mundayoor, S.; Omkumar, R.V.; Anas, A.; Ishikawa, M. Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnology Advances. 2010, 28, 199-213.
2. Moore, C.M.; Emberton, M.; Bown, S.G. Photodynamic Therapy for Prostate Cancer-An Emerging Approach for Organ-Confined Disease. Lasers in Surgery and Medicine. 2011, 43, 768-775.
3. Chan, W.C.W.; Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998, 281, 2016-2018.
4. Tan, A.; Yildirimer, L.; Rajadas, J.; De La Pena, H.; Pastorin, G.; Seifalian, A. Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomedicine. 2011, 6, 1101-1114.
5. Jiang, W.; Papa, E.; Fischer, H.; Mardyani, S.; Chan, W.C.W. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends in Biotechnology. 2004, 22, 607-609.
6. Kwon, S.; Kim, M.S.; Lee, E.S.; Sohn, J.S.; Park, J.-K. A quantum dot-based microfluidic multi-window platform for quantifying the biomarkers of breast cancer cells. Integrative Biology. 2014, 6, 430-437.
7. Zaman, M.B.; Baral, T.N.; Jakubek, Z.J.; Zhang, J.; Wu, X.; Lai, E.; Whitfield, D.; Yu, K. Single-Domain Antibody Bioconjugated Near-IR Quantum Dots for Targeted Cellular Imaging of Pancreatic Cancer. Journal of Nanoscience and Nanotechnology. 2011, 11, 3757-3763.
8. Stroh, M.; Zimmer, J.P.; Duda, D.G.; Levchenko, T.S.; Cohen, K.S.; Brown, E.B.; Scadden, D.T.; Torchilin, V.P.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine. 2005, 11, 678-682.
9. Iyer, G.; Pinaud, F.; Tsay, J.; Li, J.J.; Bentolila, L.A.; Michalet, X.; Weiss, S. Peptide coated quantum dots for biological applications. Ieee Transactions on Nanobioscience. 2006, 5, 231-238.
10. Li, X.; Li, W.; Yang, Q.; Gong, X.; Guo, W.; Dong, C.; Liu, J.; Xuan, L.; Chang, J. Rapid and Quantitative Detection of Prostate Specific Antigen with a Quantum Dot Nanobeads-Based Immunochromatography Test Strip. Acs Applied Materials & Interfaces. 2014, 6, 6406-6414.
11. Han, S.-J.; Rathinaraj, P.; Park, S.-Y.; Kim, Y.K.; Lee, J.H.; Kang, I.-K.; Moon, J.-S.; Winiarz, J.G. Specific Intracellular Uptake of Herceptin-Conjugated CdSe/ZnS Quantum Dots into Breast Cancer Cells. Biomed Research International. 2014.
12. Mi, Y.; Li, K.; Liu, Y.; Pu, K.-Y.; Liu, B.; Feng, S.-S. Herceptin functionalized polyhedral oligomeric silsesquioxane - conjugated oligomers - silica/iron oxide nanoparticles for tumor cell sorting and detection. Biomaterials. 2011, 32, 8226-8233.
13. Cai, W.B.; Shin, D.W.; Chen, K.; Gheysens, O.; Cao, Q.Z.; Wang, S.X.; Gambhir, S.S.; Chen, X.Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters. 2006, 6, 669-676.
14. Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P.W.; Langer, R.; Farokhzad, O.C. Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Letters. 2007, 7, 3065-3070.

pdfPDF