Fluorescence imaging for specific analysis of cancer cells

Iva Blažková, Markéta Vaculovičová, Vojtěch Adam and René Kizek


Cancer is life-threatening disease, which causes nearly 7 million deaths every year worldwide and represents around 1 trillion dollars economic loss [1,2]. Cancer presents 25% of death caused in the developed countries [3]. But due to an early diagnosis and effective treatment, the mortality caused by this disease decreases and survival time increases [4]. The risk of dying from cancer decreased by 20% between 1991 and 2010 [3]. The cancer is diagnosed in the every third woman and every second man in the United States [5]. Cancer mortality in Czech Republic is about 20% [6,7]. Death rates continue to decline for all 4 major cancer sites (lung, colorectal, breast, and prostate), with lung cancer accounting for almost 40% of the total decline in men and breast cancer accounting for 34% of the total decline in women [4]. The most common causes of death are cancers of the lung, followed by colorectal, breast and stomach [7]. Early detection of cancer can significantly impact survival of cancer patients, so the regular screening is highly recommended [8-10].

1. Fan, Z.; Senapati, D.; Singh, A.K.; Ray, P.C. Theranostic magnetic core-plasmonic shell star shape nanoparticle for the isolation of targeted rare tumor cells from whole blood, fluorescence imaging, and photothermal destruction of cancer. Mol. Pharm. 2013, 10, 857-866.
2. Sultana, S.; Khan, M.R.; Kumar, M.; Kumar, S.; Ali, M. Nanoparticles-mediated drug delivery approaches for cancer targeting: A review. J. Drug Target. 2013, 21, 107-125.
3. Siegel, R.; Ma, J.M.; Zou, Z.H.; Jemal, A. Cancer statistics, 2014. CA-Cancer J. Clin. 2014, 64, 9-29.
4. Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA-Cancer J. Clin. 2012, 62, 10-29.
5. Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S., et al. Cancer treatment and survivorship statistics, 2012. CA-Cancer J. Clin. 2012, 62, 220-241.
6. Zaloudik, J. Onkologicky vyzkum v ceske republice v souvislostech. Klinicka onkologie 2007, 405-407.
7. Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in europe: Estimates for 40 countries in 2012. European Journal of Cancer 2013, 49, 1374-1403.
8. Carter, H.B.; Albertsen, P.C.; Barry, M.J.; Etzioni, R.; Freedland, S.J.; Greene, K.L.; Holmberg, L.; Kantoff, P.; Konety, B.R.; Murad, M.H., et al. Early detection of prostate cancer: Aua guideline. Journal of Urology 2013, 190, 419-426.
9. Esserman, L.J.; Thompson, I.M.; Reid, B. Overdiagnosis and overtreatment in cancer an opportunity for improvement. JAMA-J. Am. Med. Assoc. 2013, 310, 797-798.
10. Horilova, J.; Cunderlikova, B.; Marcek Chorvatova, A. Time- and spectrally resolved characteristics of flavin fluorescence in u87mg cancer cells in culture. Journal of biomedical optics 2015, 20, 51017.
11. Blazkova, I.; Vaculovicova, M.; Eckschlager, T.; Stiborova, M.; Trnkova, L.; Adam, V.; Kizek, R. Study of fluorescence of doxorubicin in muscle tissue using highly sensitive fluorescence sensing. Chem. Sensors 2014, 4, 1-6.
12. Balas, C. Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas. Sci. Technol. 2009, 20, 1-12.
13. Stemmer, N.; Mehnert, J.; Steinbrink, J.; Wunder, A. Noninvasive fluorescence imaging in animal models of stroke. Curr. Med. Chem. 2012, 19, 4786-4793.
14. Wouters, F.S.; Verveer, P.J.; Bastiaens, P.I.H. Imaging biochemistry inside cells. Trends Cell Biol. 2001, 11, 203-211.
15. Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626-634.
16. Liu, Q.L.; Xu, S.H.; Niu, C.X.; Li, M.F.; He, D.C.; Lu, Z.L.; Ma, L.; Na, N.; Huang, F.; Jiang, H., et al. Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens. Bioelectron. 2015, 64, 119-125.
17. Pu, Y.; Tang, R.; Xue, J.P.; Wang, W.B.; Xu, B.G.; Achilefu, S. Synthesis of dye conjugates to visualize the cancer cells using fluorescence microscopy. Appl. Optics 2014, 53, 2345-2351.
18. Rosenblum, L.T.; Kosaka, N.; Mitsunaga, M.; Choyke, P.L.; Kobayashi, H. Optimizing quantitative in vivo fluorescence imaging with near-infrared quantum dots. Contrast Media & Molecular Imaging 2011, 6, 148-152.
19. Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chemical Society Reviews 2013, 42, 622-661.
20. Chatterjee, K.; Zhang, J.Q.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology 2010, 115, 155-162.
21. Huang, Y.Y.; Hu, F.; Zhao, R.; Zhang, G.X.; Yang, H.; Zhang, D.Q. Tetraphenylethylene conjugated with a specific peptide as a fluorescence turn-on bioprobe for the highly specific detection and tracing of tumor markers in live cancer cells. Chem.-Eur. J. 2014, 20, 158-164.
22. Chudakov, D.M.; Matz, M.V.; Lukyanov, S.; Lukyanov, K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews 2010, 90, 1103-1163.
23. Andreadou, I.; Sigala, F.; Iliodromitis, E.K.; Papaefthimiou, M.; Sigalas, C.; Aligiannis, N.; Savvari, P.; Gorgoulis, V.; Papalabros, E.; Kremastinos, D.T. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of Molecular and Cellular Cardiology 2007, 42, 549-558.
24. Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185-229.
25. Key, J.; Leary, J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. International Journal of Nanomedicine 2014, 9, 711-726.
26. Zhu, Y.; Hong, H.; Xu, Z.P.; Li, Z.; Cai, W. Quantum dot-based nanoprobes for in vivo targeted imaging. Curr. Mol. Med. 2013, 13, 1549-1567.
27. Wang, Y.C.; Hu, R.; Lin, G.M.; Roy, I.; Yong, K.T. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl. Mater. Interfaces 2013, 5, 2786-2799.
28. Moulick, A.; Blazkova, I.; Milosavljevic, V.; Fohlerova, Z.; Hubalek, J.; Kopel, P.; Vaculovicova, M.; Adam, V.; Kizek, R. Application of cdte/znse quantum dots in in vitro imaging of chicken tissue and embryo. Photochem. Photobiol. 2015, 91, 417-423.
29. Hong, L.; Wang, Z.; Yuan, L.; Tan, J.H.; Wang, L.X.; Qu, G.B.; Zhang, D.Q.; Lin, R.H.; Liu, S.J. Subcellular distribution of cdse quantum dots (qds) in breast cancer cells. J. Nanosci. Nanotechnol. 2012, 12, 365-367.
30. Gallo, J.; Garcia, I.; Genicio, N.; Penades, S. Cdte-based qds: Preparation, cytotoxicity, and tumor cell death by targeting transferrin receptor. Part. Part. Syst. Charact. 2014, 31, 126-133.
31. Hu, W.Q.; Fang, M.; Zhao, H.L.; Yan, S.G.; Yuan, J.P.; Peng, C.W.; Yang, G.F.; Li, Y.; Li, J.D. Tumor invasion unit in gastric cancer revealed by qds-based in situ molecular imaging and multispectral analysis. Biomaterials 2014, 35, 4125-4132.
32. Moulick, A.; Blazkova, I.; Milosavljevic, V.; Fohlerova, Z.; Hubalek, J.; Kopel, P.; Vaculovicova, M.; Adam, V.; Kizek, R. Application of cdte/znse quantum dots in in vitro imaging of chicken tissue and embryo. Photochemistry and Photobiology 2014.
33. Lin, G.M.; Ding, Z.C.; Hu, R.; Wang, X.M.; Chen, Q.; Zhu, X.M.; Liu, K.; Liang, J.H.; Lu, F.Q.; Lei, D.L., et al. Cytotoxicity and immune response of cdse/zns quantum dots towards a murine macrophage cell line. RSC Adv. 2014, 4, 5792-5797.
34. Wang, Z.Y.; Zong, S.F.; Chen, H.; Wang, C.L.; Xu, S.H.; Cui, Y.P. Sers-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Adv. Healthc. Mater. 2014, 3, 1889-1897.
35. Chang, B.X.; Yang, X.J.; Wang, F.; Wang, Y.S.; Yang, R.; Zhang, N.; Wang, B.Q. Water soluble fluorescence quantum dot probe labeling liver cancer cells. J. Mater. Sci.-Mater. Med. 2013, 24, 2505-2508.
36. Sevick-Muraca, E.M. Translation of near-infrared fluorescence imaging technologies: Emerging clinical applications. Annual Review of Medicine, Vol 63 2012, 63, 217-231.
37. Mielke, D.; Malinova, V.; Rohde, V. Comparison of intraoperative microscopic and endoscopic icg angiography in aneurysm surgery. Neurosurgery 2014, 10, 418-425.
38. Morita, Y.; Sakaguchi, T.; Unno, N.; Shibasaki, Y.; Suzuki, A.; Fukumoto, K.; Inaba, K.; Baba, S.; Takehara, Y.; Suzuki, S., et al. Detection of hepatocellular carcinomas with near-infrared fluorescence imaging using indocyanine green: Its usefulness and limitation. International Journal of Clinical Oncology 2013, 18, 232-241.
39. Bahmani, B.; Guerrero, Y.; Vullev, V.; Singh, S.P.; Kundra, V.; Anvari, B. Icg-loaded polymeric nanocapsules functionalized with anti-her2 for targeted fluorescence imaging and photodestruction of ovarian cancer cells. Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications V 2013, 8596.
40. Zhang, L.; Pu, Y.; Xue, J.P.; Pratavieira, S.; Xu, B.G.; Achilefu, S.; Alfano, R.R. Tryptophan as the fingerprint for distinguishing aggressiveness among breast cancer cell lines using native fluorescence spectroscopy. Journal of biomedical optics 2014, 19.
41. Pu, Y.; Xue, J.P.; Xu, B.G.; Wang, W.B.; Gu, Y.Q.; Tang, R.; Achilefu, S.; Ackerstaff, E.; Koutcher, J.A.; Alfano, R.R. Investigation of native fluorescence spectral difference among prostate cancer cell lines with different risk levels. Optical Biopsy Xi 2013, 8577.
42. Gao, S.P.; Chen, D.H.; Li, Q.W.; Ye, J.; Jiang, H.; Amatore, C.; Wang, X.M. Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Sci Rep 2014, 4.
43. Zhang, X.D.; Wu, F.G.; Liu, P.D.; Gu, N.; Chen, Z. Enhanced fluorescence of gold nanoclusters composed of haucl4 and histidine by glutathione: Glutathione detection and selective cancer cell imaging. Small 2014, 10, 5170-5177.
44. Ding, C.Q.; Tian, Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular ph. Biosens. Bioelectron. 2015, 65, 183-190.
45. Zhang, Y.; Liu, J.M.; Yan, X.P. Self-assembly of folate onto polyethyleneimine-coated cds/zns quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal. Chem. 2013, 85, 228-234.
46. Maity, A.R.; Saha, A.; Roy, A.; Jana, N.R. Folic acid functionalized nanoprobes for fluorescence-, dark-field-, and dual-imaging-based selective detection of cancer cells and tissue. ChemPlusChem 2013, 78, 259-267.
47. van Dam, G.M.; Themelis, G.; Crane, L.M.A.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.G.; van der Zee, A.G.J., et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results. Nature Medicine 2011, 17, 1315-U1202.
48. Metildi, C.A.; Felsen, C.N.; Savariar, E.N.; Nguyen, Q.T.; Kaushal, S.; Hoffman, R.M.; Tsien, R.Y.; Bouvet, M. Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Ann. Surg. Oncol. 2015, 22, 2082-2087.
49. Ahn, K.H.; Kim, D.; Kim, S.; Kim, K.H. Fluorescence probe useful for detecting tyrosine kinase for imaging cancer cells or tissues, comprises 3-hydroxy-6-methyl-naphthalene-2-carbaldehyde. WO2014181960-A2; KR2014133730-A, WO2014181960-A2 13 Nov 2014 C12Q-001/48 201478.
50. Lai, B.H.; Chen, D.H. Lab6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-ir photothermal therapy of cancer cells. Acta Biomater. 2013, 9, 7556-7563.
51. Cai, H.W.; Peng, F.Y. 2-nbdg fluorescence imaging of hypermetabolic circulating tumor cells in mouse xenograft model of breast cancer. J. Fluoresc. 2013, 23, 213-220.
52. Zhang, Y.; Liu, W.; Banks, C.E.; Liu, F.; Li, M.; Xia, F.; Yang, X.L. A fluorescence-quenching platform based on biomineralized hydroxyapatite from natural seashell and applied to cancer cell detection. Sci Rep 2014, 4.
53. Lin, Z.H.; Liu, Z.P.; Zhang, H.; Su, X.G. Near-infrared fluorescence probe for the determination of acid phosphatase and imaging of prostate cancer cells. Analyst 2015, 140, 1629-1636.
54. Ito, H.; Oga, A.; Ikemoto, K.; Furuya, T.; Maeda, N.; Yamamoto, S.; Kawauchi, S.; Itoh, H.; Oka, M.; Sasaki, K. Analysis of centromere signal patterns in breast cancer cells with chromosomal instability using image cytometry combined with centromere fluorescence in situ hybridization. Cytom. Part A 2014, 85A, 809-816.
55. Li, C.Y.; Bai, J.C.; Hao, X.M.; Zhang, S.; Hu, Y.H.; Zhang, X.B.; Yuan, W.P.; Hu, L.P.; Cheng, T.; Zetterberg, A., et al. Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients. Cell Cycle 2014, 13, 1299-1305.
56. Wojas-Krawczyk, K.; Krawczyk, P.A.; Ramlau, R.A.; Szumilo, J.; Kozielski, J.; Kalinka-Warzochas, E.; Bryl, M.; Knopik-Nabrowicz, A.; Spychalski, L.; Szczesna, A., et al. The analysis of alk gene rearrangement by fluorescence in situ hybridization in non-small cell lung cancer patients. Wspolczesna Onkol. 2013, 17, 484-492.

pdfPDF