Skin carcinogenesis: the pathogenetic and therapeutic role of zinc

Gabriella Emri, Eszter Emri, Gábor Boros, Csaba Hegedűs, Eszter Janka, Emese Gellén, Éva Remenyik


1. Introduction The increasing incidence of non-melanoma skin cancers (NMSC) and cutaneous malignant melanoma (CMM) is a significant burden on the health care system. The incidence of NMSC is approximately 100 per 100000 individuals in Europe [1]. Basal cell carcinoma (BCC) is a semi-malignant tumour that usually develops on sun-exposed skin areas. Both cumulative and intermittent high-dose ultraviolet irradiation (UVR) play a role in the formation of BCC [1]. Cutaneous squamous cell cancer (CSCC) appears to be associated with the cumulative UVR because it develops on the chronically sun damaged skin of elderly people at the site of precancerous skin lesions [1]. CSCCs rarely metastasise to regional lymph nodes, but they do so in a manner that depends on tumour depth and immune status. Cutaneous malignant melanoma (CMM) has a heterogeneous aetiology and pathogenesis, e.g., lentigo maligna melanoma is associated with chronic cumulative sun exposure, whereas other forms of CMM are associated with high-dose intermittent UVR, and there are even types of CMM that are not related to sunlight [2]. The incidence of CMM is 4-19 per 100000 individuals in Europe [3], and many patients are younger than 40 years old. Hereditary factors that affect skin pigmentation, DNA repair efficacy, and immune response play a very important role in the pathogenesis of CMM. CMM is characterised by a high propensity to metastasise and a low healing rate in metastatic cases. Surgery is the mainstay of skin cancer therapies. Topical and systemic medications are used to treat very early or advanced stages of the disease.

1. Fartasch, M.; Diepgen, T.L.; Schmitt, J.; Drexler, H. The relationship between occupational sun exposure and non-melanoma skin cancer: Clinical basics, epidemiology, occupational disease evaluation, and prevention. Deutsches Arzteblatt international 2012, 109, 715-720.
2. Whiteman, D.C.; Pavan, W.J.; Bastian, B.C. The melanomas: A synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment cell & melanoma research 2011, 24, 879-897.
3. MacKie, R.M.; Hauschild, A.; Eggermont, A.M. Epidemiology of invasive cutaneous melanoma. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2009, 20 Suppl 6, vi1-7.
4. Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc therapy in dermatology: A review. Dermatology research and practice 2014, 2014, 709152.
5. Molokhia, M.M.; Portnoy, B. Neutron activation analysis of trace elements in skin. Iv. Regional variations in copper, manganese and zinc in normal skin. Br J Dermatol 1970, 82, 254-255.
6. Kawamura, T.; Ogawa, Y.; Nakamura, Y.; Nakamizo, S.; Ohta, Y.; Nakano, H.; Kabashima, K.; Katayama, I.; Koizumi, S.; Kodama, T., et al. Severe dermatitis with loss of epidermal langerhans cells in human and mouse zinc deficiency. J Clin Invest 2012, 122, 722-732.
7. Portnoy, B.; Molokhia, M. Letter: Zinc in acrodermatis enteropathica. Lancet 1974, 2, 663-664.
8. Schwartz, J.R.; Marsh, R.G.; Draelos, Z.D. Zinc and skin health: Overview of physiology and pharmacology. Dermatol Surg 2005, 31, 837-847; discussion 847.
9. Taylor, K.M.; Vichova, P.; Jordan, N.; Hiscox, S.; Hendley, R.; Nicholson, R.I. Zip7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology 2008, 149, 4912-4920.
10. Taylor, K.M.; Hiscox, S.; Nicholson, R.I.; Hogstrand, C.; Kille, P. Protein kinase ck2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel zip7. Science signaling 2012, 5, ra11.
11. Colvin, R.A.; Holmes, W.R.; Fontaine, C.P.; Maret, W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics : integrated biometal science 2010, 2, 306-317.
12. Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol Rev 1993, 73, 79-118.
13. Berg, J.M.; Shi, Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996, 271, 1081-1085.
14. Powell, S.R. The antioxidant properties of zinc. The Journal of nutrition 2000, 130, 1447S-1454S.
15. Maret, W. The function of zinc metallothionein: A link between cellular zinc and redox state. The Journal of nutrition 2000, 130, 1455S-1458S.
16. McGee, H.M.; Woods, G.M.; Bennett, B.; Chung, R.S. The two faces of metallothionein in carcinogenesis: Photoprotection against uvr-induced cancer and promotion of tumour survival. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 2010, 9, 586-596.
17. Ablett, E.; Whiteman, D.C.; Boyle, G.M.; Green, A.C.; Parsons, P.G. Induction of metallothionein in human skin by routine exposure to sunlight: Evidence for a systemic response and enhanced induction at certain body sites. The Journal of investigative dermatology 2003, 120, 318-324.
18. Hanada, K.; Sawamura, D.; Hashimoto, I.; Kida, K.; Naganuma, A. Epidermal proliferation of the skin in metallothionein-null mice. The Journal of investigative dermatology 1998, 110, 259-262.
19. Karasawa, M.; Nishimura, N.; Nishimura, H.; Tohyama, C.; Hashiba, H.; Kuroki, T. Localization of metallothionein in hair follicles of normal skin and the basal cell layer of hyperplastic epidermis: Possible association with cell proliferation. The Journal of investigative dermatology 1991, 97, 97-100.
20. Inoue, Y.; Hasegawa, S.; Ban, S.; Yamada, T.; Date, Y.; Mizutani, H.; Nakata, S.; Tanaka, M.; Hirashima, N. Zip2 protein, a zinc transporter, is associated with keratinocyte differentiation. The Journal of biological chemistry 2014, 289, 21451-21462.
21. Li, Y.; Maret, W. Transient fluctuations of intracellular zinc ions in cell proliferation. Experimental cell research 2009, 315, 2463-2470.
22. Emri, E.; Miko, E.; Bai, P.; Boros, G.; Nagy, G.; Rozsa, D.; Juhasz, T.; Hegedus, C.; Horkay, I.; Remenyik, E., et al. Effects of non-toxic zinc exposure on human epidermal keratinocytes. Metallomics : integrated biometal science 2015, 7, 499-507.
23. Bhujade, A.M.; Talmale, S.; Kumar, N.; Gupta, G.; Reddanna, P.; Das, S.K.; Patil, M.B. Evaluation of cissus quadrangularis extracts as an inhibitor of cox, 5-lox, and proinflammatory mediators. J Ethnopharmacol 2012, 141, 989-996.
24. Hseu, Y.C.; Chou, C.W.; Senthil Kumar, K.J.; Fu, K.T.; Wang, H.M.; Hsu, L.S.; Kuo, Y.H.; Wu, C.R.; Chen, S.C.; Yang, H.L. Ellagic acid protects human keratinocyte (hacat) cells against uva-induced oxidative stress and apoptosis through the upregulation of the ho-1 and nrf-2 antioxidant genes. Food Chem Toxicol 2012, 50, 1245-1255.
25. Chapple, S.J.; Siow, R.C.; Mann, G.E. Crosstalk between nrf2 and the proteasome: Therapeutic potential of nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 2012, 44, 1315-1320.
26. Surh, Y.J.; Kundu, J.K.; Na, H.K.; Lee, J.S. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 2005, 135, 2993S-3001S.
27. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology 2007, 39, 44-84.
28. Marrot, L.; Meunier, J.R. Skin DNA photodamage and its biological consequences. Journal of the American Academy of Dermatology 2008, 58, S139-148.
29. de Gruijl, F.R.; van Kranen, H.J.; Mullenders, L.H. Uv-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. Journal of photochemistry and photobiology. B, Biology 2001, 63, 19-27.
30. Pfeifer, G.P.; Besaratinia, A. Uv wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 2012, 11, 90-97.
31. Hanada, K.; Sawamura, D.; Tamai, K.; Baba, T.; Hashimoto, I.; Muramatsu, T.; Miura, N.; Naganuma, A. Novel function of metallothionein in photoprotection: Metallothionein-null mouse exhibits reduced tolerance against ultraviolet b injury in the skin. The Journal of investigative dermatology 1998, 111, 582-585.
32. Wang, W.H.; Li, L.F.; Zhang, B.X.; Lu, X.Y. Metallothionein-null mice exhibit reduced tolerance to ultraviolet b injury in vivo. Clinical and experimental dermatology 2004, 29, 57-61.
33. Jourdan, E.; Marie Jeanne, R.; Regine, S.; Pascale, G. Zinc-metallothionein genoprotective effect is independent of the glutathione depletion in hacat keratinocytes after solar light irradiation. Journal of cellular biochemistry 2004, 92, 631-640.
34. Jourdan, E.; Emonet-Piccardi, N.; Didier, C.; Beani, J.C.; Favier, A.; Richard, M.J. Effects of cadmium and zinc on solar-simulated light-irradiated cells: Potential role of zinc-metallothionein in zinc-induced genoprotection. Archives of biochemistry and biophysics 2002, 405, 170-177.
35. Parat, M.O.; Richard, M.J.; Pollet, S.; Hadjur, C.; Favier, A.; Beani, J.C. Zinc and DNA fragmentation in keratinocyte apoptosis: Its inhibitory effect in uvb irradiated cells. J Photochem Photobiol B 1997, 37, 101-106.
36. Saito, T.; Tezuka, T.; Konno, R.; Fujii, N. Protective effects of metallothionein i and ii against metal- and ultraviolet radiation-induced damage in cultured lens epithelial cells. Japanese journal of ophthalmology 2010, 54, 486-493.
37. Stork, C.J.; Martorano, L.M.; Li, Y.V. Uvb radiation induces an increase in intracellular zinc in human epidermal keratinocytes. International journal of molecular medicine 2010, 26, 463-469.
38. Wang, L.; Liu, W.; Parker, S.H.; Wu, S. Nitric oxide synthase activation and oxidative stress, but not intracellular zinc dyshomeostasis, regulate ultraviolet b light-induced apoptosis. Life Sci 2010, 86, 448-454.
39. McCord, M.C.; Aizenman, E. The role of intracellular zinc release in aging, oxidative stress, and alzheimer‘s disease. Front Aging Neurosci 2014, 6, 77.
40. Liu, B.; Chen, Y.; St Clair, D.K. Ros and p53: A versatile partnership. Free radical biology & medicine 2008, 44, 1529-1535.
41. Cirone, M.; Garufi, A.; Di Renzo, L.; Granato, M.; Faggioni, A.; D‘Orazi, G. Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology 2013, 2, e26198.
42. Pedersen, M.O.; Larsen, A.; Stoltenberg, M.; Penkowa, M. The role of metallothionein in oncogenesis and cancer prognosis. Prog Histochem Cytochem 2009, 44, 29-64.
43. Thirumoorthy, N.; Shyam Sunder, A.; Manisenthil Kumar, K.; Senthil Kumar, M.; Ganesh, G.; Chatterjee, M. A review of metallothionein isoforms and their role in pathophysiology. World journal of surgical oncology 2011, 9, 54.
44. Weinlich, G. Metallothionein-overexpression as a prognostic marker in melanoma. Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di dermatologia e sifilografia 2009, 144, 27-38.
45. Sugita, K.; Yamamoto, O.; Asahi, M. Immunohistochemical analysis of metallothionein expression in malignant melanoma in japanese patients. The American Journal of dermatopathology 2001, 23, 29-35.
46. Emri, E.; Egervari, K.; Varvolgyi, T.; Rozsa, D.; Miko, E.; Dezso, B.; Veres, I.; Mehes, G.; Emri, G.; Remenyik, E. Correlation among metallothionein expression, intratumoural macrophage infiltration and the risk of metastasis in human cutaneous malignant melanoma. Journal of the European Academy of Dermatology and Venereology : JEADV 2013, 27, e320-327.
47. Faller, W.J.; Rafferty, M.; Hegarty, S.; Gremel, G.; Ryan, D.; Fraga, M.F.; Esteller, M.; Dervan, P.A.; Gallagher, W.M. Metallothionein 1e is methylated in malignant melanoma and increases sensitivity to cisplatin-induced apoptosis. Melanoma research 2010, 20, 392-400.
48. Koga, Y.; Pelizzola, M.; Cheng, E.; Krauthammer, M.; Sznol, M.; Ariyan, S.; Narayan, D.; Molinaro, A.M.; Halaban, R.; Weissman, S.M. Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res 2009, 19, 1462-1470.
49. Pula, B.; Tazbierski, T.; Zamirska, A.; Werynska, B.; Bieniek, A.; Szepietowski, J.; Rys, J.; Dziegiel, P.; Podhorska-Okolow, M. Metallothionein 3 expression in normal skin and malignant skin lesions. Pathology oncology research : POR 2015, 21, 187-193.
50. Zamirska, A.; Matusiak, L.; Dziegiel, P.; Szybejko-Machaj, G.; Szepietowski, J.C. Expression of metallothioneins in cutaneous squamous cell carcinoma and actinic keratosis. Pathology oncology research : POR 2012, 18, 849-855.
51. Guo, X.; Xu, Y.; Zhao, Z. In-depth genomic data analyses revealed complex transcriptional and epigenetic dysregulations of braf (v600e) in melanoma. Molecular cancer 2015, 14, 60.
52. Carruthers, C.; Suntzeff, V. Calcium, copper, and zinc in the epidermal carcinogenesis of mouse and man. Cancer research 1946, 6, 296.
53. Lazarczyk, M.; Pons, C.; Mendoza, J.A.; Cassonnet, P.; Jacob, Y.; Favre, M. Regulation of cellular zinc balance as a potential mechanism of ever-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. The Journal of experimental medicine 2008, 205, 35-42.
54. Schetter, A.J.; Heegaard, N.H.; Harris, C.C. Inflammation and cancer: Interweaving microrna, free radical, cytokine and p53 pathways. Carcinogenesis 2010, 31, 37-49.
55. Alder, H.; Taccioli, C.; Chen, H.; Jiang, Y.; Smalley, K.J.; Fadda, P.; Ozer, H.G.; Huebner, K.; Farber, J.L.; Croce, C.M., et al. Dysregulation of mir-31 and mir-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis 2012, 33, 1736-1744.
56. Bruegger, C.; Kempf, W.; Spoerri, I.; Arnold, A.W.; Itin, P.H.; Burger, B. Microrna expression differs in cutaneous squamous cell carcinomas and healthy skin of immunocompetent individuals. Experimental dermatology 2013, 22, 426-428.
57. Wang, A.; Landen, N.X.; Meisgen, F.; Lohcharoenkal, W.; Stahle, M.; Sonkoly, E.; Pivarcsi, A. Microrna-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells. PloS one 2014, 9, e103206.
58. Choi, D.K.; Li, Z.J.; Chang, I.K.; Yeo, M.K.; Kim, J.M.; Sohn, K.C.; Im, M.; Seo, Y.J.; Lee, J.H.; Kim, C.D., et al. Clinicopathological roles of s100a8 and s100a9 in cutaneous squamous cell carcinoma in vivo and in vitro. Archives of dermatological research 2014, 306, 489-496.
59. Muller-Decker, K. Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: Pharmacological, genetic, and clinical evidence. Cancer metastasis reviews 2011, 30, 343-361.
60. Weng, H.; Deng, Y.; Xie, Y.; Liu, H.; Gong, F. Expression and significance of hmgb1, tlr4 and nf-kappab p65 in human epidermal tumors. BMC cancer 2013, 13, 311.
61. Haase, H.; Rink, L. The immune system and the impact of zinc during aging. Immunity & ageing : I & A 2009, 6, 9.
62. Soehnge, H.; Ouhtit, A.; Ananthaswamy, O.N. Mechanisms of induction of skin cancer by uv radiation. Frontiers in bioscience : a journal and virtual library 1997, 2, d538-551.
63. Cherian, M.G.; Jayasurya, A.; Bay, B.H. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutation research 2003, 533, 201-209.
64. Zheng, J.; Zhang, X.X.; Yu, H.; Taggart, J.E.; Ding, W.Q. Zinc at cytotoxic concentrations affects posttranscriptional events of gene expression in cancer cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2012, 29, 181-188.
65. Kim, K.W.; Speirs, C.K.; Jung, D.K.; Lu, B. The zinc ionophore pci-5002 radiosensitizes non-small cell lung cancer cells by enhancing autophagic cell death. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2011, 6, 1542-1552.
66. Lamore, S.D.; Wondrak, G.T. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 2011, 24, 875-890.
67. Margalit, O.; Simon, A.J.; Yakubov, E.; Puca, R.; Yosepovich, A.; Avivi, C.; Jacob-Hirsch, J.; Gelernter, I.; Harmelin, A.; Barshack, I., et al. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. International journal of cancer. Journal international du cancer 2012, 131, E562-568.

pdfPDF