Biomarkers of Zn status associated to colorectal cancer pathogenesis

Molina-López J, Florea D, Herrera-Quintana L, Adam V, Kizek R, Quintero B, Planells E


Cancer is a leading cause of death in both more and less economically developed countries, particularly in less ones, in which about 82% of the world’s population resides [1]. Colorectal cancer (CRC) is the third most frequent malignant disease [2]. Over the last decade, a whole range of new technologies have been introduced in clinical practice to diagnose and treat the disease, with therapeutic modalities extending to advanced stages of the disease. Nevertheless, prevention undoubtedly remains the key to reducing morbidity and mortality [3]. Variation in international incidence rates [2] suggests that CRC aetiology is influenced by modifiable lifestyle factors, such as diet [4–7]. Beyond their general effects on health, micronutrients in patients with cancer have unique implications because of their potential direct effects on existing cancers, and effects on factors that may influence carcinogenesis, such as immunity and interactions with treatment [8]. Zinc is an essential trace element that participates as cofactor in a large number of intermediary metabolism proteins, in hormone secretion pathways and in different mechanisms of immune defence [9]. Zinc is known to be an essential component in DNA-binding zinc fingers proteins, as well as in copper/zinc superoxide dismutase and in several proteins involved in DNA repair mechanisms. Thus, zinc plays an important role in transcription factors function and, antioxidant defence. Dietary deficiencies in zinc can contribute to single- and double-strand DNA breaks and DNA oxidative modifications that increase the risk for cancer development [10]. It is well known that carcinogenesis is a multistep process in which genetic sequence alterations helped by environmental factors, such as oxidative stress and antioxidant status [11], stimulating the selection and proliferation of malignant clones, eventually leading to the development of a detectable tumor. Furthermore, significant alterations in Zn(II) levels in tissues have previously been reported in patients with various forms of cancer. Moreover, low plasma Zn(II) levels have been observed in patients with cancer of the colon, bronchus or digestive system [12]. Because CRC treatment plan needs to consider nutritional responses towards anti-cancer drugs based on their biological and genetic characteristics, a possible association with zinc in cancer treatment also requires attention. Therefore, in this paper, we analyse the physiological and biological implication of Zn on CRC to provide screening, treatment, and prevention strategies. The analysis of Zn biomarkers levels could provide new biological insights that could be applied in prevention, molecular diagnosis, prognosis and treatment of CRC.

1. Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012: Global Cancer Statistics, 2012. Cancer Journal for Clinicians 2015, 65(2), 87-108.
2. American Cancer Society. Global Cancer Facts & Figures 3rd Edition. Atlanta. American Cancer Society 2015.
3. Zavoral M., Suchanek S., Zavada F., Dusek L., Muzik J., Seifert B., Premysl F. Colorectal cancer screening in Europe. World Journal of Gastroenterology, 2009, 15(47), 5907-15.
4. Chun Y.J., Sohn S.-K., Song H.K., Lee S.M., Youn Y.H., Lee S., ParkH. Associations of colorectal cancer incidence with nutrient and food group intakes in korean adults: a case-control study. Clinical Nutrition Research 2015, 4(2), 110-23
. 5. Azizi H., Asadollahi K., Davtalab Esmaeili E., Mirzapoor M. Iranian dietary patterns and risk of colorectal cancer. Health Promotion Perspectives 2015, 5(1), 72-80.
6. Romaguera D., Ward H., Wark P.A., Vergnaud A.-C., Peeters P.H., van Gils C.H., et al. Pre-diagnostic concordance with the WCRF/AICR guidelines and survival in European colorectal cancer patients: a cohort study. BMC Medicine 2015, 13(1), 107.
7. Vrieling A., Kampman E. The role of body mass index, physical activity, and diet in colorectal cancer recurrence and survival: a review of the literature. The American Journal of Clinical Nutrition 2010, 92(3), 471-90.
8. Giovannucci E., Chan A.T. Role of Vitamin and Mineral Supplementation and Aspirin Use in Cancer Survivors. Journal of Clinical Oncology 2010, 28(26), 4081-5.
9. Vallee B.L., Auld D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990, 29(24), 5647-59.
10. Ho E. Zinc deficiency, DNA damage and cancer risk. The Journal of Nutritional Biochemistry 2004, 15(10), 572-8.
11. Gopčević K.R., Rovčanin B.R., Tatić S.B., Krivokapić Z.V., Gajić M.M., Dragutinović V.V. Activity of Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione Reductase in Different Stages of Colorectal Carcinoma. Digestive Diseases and Sciences2013, 58(9), 2646-52.
12. Mazdak H, Yazdekhasti F, Movahedian A, Mirkheshti N, Shafieian M. The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group. International Urology and Nephrology2010, 42(1), 89-93.
13. Klaunig J.E., Kamendulis L.M. The role of oxidative stress in carcinogenesis. The Annual Review of Pharmacology and Toxicology 2004, 44, 239-67.
14. Christudoss P., Selvakumar R., Pulimood A.B., Fleming J.J., Mathew G. Tissue zinc levels in precancerous tissue in the gastrointestinal tract of azoxymethane (AOM)-treated rats. Experimental and Toxicologic Pathology2008, 59(5), 313-8.
15. Kuo H.W., Chen S.F., Wu C.C., Chen D.R., Lee J.H. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biological Trace Element Research 2002, 89(1), 1-11.
16. Gupta S.K., Singh S.P., Shukla V.K. Copper, zinc, and Cu/Zn ratio in carcinoma of the gallbladder. Journal of Surgical Oncology2005, 91(3), 204-8.
17. Gupta S.K., Shukla V.K., Vaidya M.P., Roy S.K., Gupta S. Serum and tissue trace elements in colorectal cancerJournal of Surgical Oncology 1993,52(3), 172-5.
18. Arslan M., Demir H., Arslan H., Gokalp A.S., Demir C. Trace elements, heavy metals and other biochemical parameters in malignant glioma patients. Asian Pacific Journal of Cancer Prevention 2011, 12(2), 447-51.
19. Oyama T., Kawamoto T., Matsuno K., Osaki T., Matsumoto A., Isse T., Isse T., Nakata S., Ozaki S., Sugaya M., Yasuda M., Yamashita T., Takenoyama M., Sugio K., Yasumoto K. A case-case study comparing the usefulness of serum trace elements (Cu, Zn and Se) and tumor markers (CEA, SCC and SLX) in non-small cell lung cancer patients. Anticancer Research 2003, 23(1B), 605-12.
20. Kim E.S., Lim C.S., Chun H.J., Keum B., Seo Y.S., Kim Y.S., Jeen Y.T., Lee H.S., Um S.H., Kim C.D., Ryu H.S., Cho B.R. Detection of Cu(I) and Zn(II) ions in colon tissues by multi-photon microscopy: novel marker of antioxidant status of colon neoplasm. Journal of Clinical Pathology 2012, 65(10), 882-7.
21. Gupta S.K., Shukla V.K., Vaidya M.P., Roy S.K., Gupta S. Serum and tissue trace elements in colorectal cancer. Journal of Surgical Oncology 1993, 52(3), 172-5.
22. Fraker P.J., Haas S.M., Luecke R.W. Effect of zinc deficiency on the immune response of the young adult A/J mouseJournal of Nutrition 1977, 107(10), 1889-95.
23. Rudolf. Diverse sensitivity of cells representing various stages of colon carcinogenesis to increased extracellular zinc: Implications for zinc chemoprevention. Oncology Reports 2011, 25(3),769-80.
24. Christudoss P., Selvakumar R., Pulimood A.B., Fleming J.J., Mathew G. Protective Role of Aspirin, Vitamin C, and Zinc and their Effects on Zinc Status in the DMH-Induced Colon Carcinoma ModelAsian Pacific Journal of Cancer Prevention 2013, 14(8), 4627-34.
25. Wang C., Vernon R., Lange O., Tyka M., Baker D. Prediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry. Protein Science 2010, 19(3), 494-506.
26. Fang J., Nakamura H., Iyer A.K. Tumor-targeted induction of oxystress for cancer therapy. Journal of Drug Targeting 2007, 15(7-8), 475-86.
27. Chadha V.D., Vaiphei K., Dhawan D.K. Zinc mediated normalization of histoarchitecture and antioxidant status offers protection against initiation of experimental carcinogenesis. Molecular and Cellular Biochemistry 2007, 304(1-2), 101-8.
28. Biasi F., Guina T., Maina M., Nano M., Falcone A., Aroasio E., Saracco G.M., Papotti M., Leonarduzzi G., Poli G. Progressive increase of matrix metalloprotease-9 and interleukin-8 serum levels during carcinogenic process in human colorectal tract. PloS One 2012, 7(7), e41839.
29. Hopkins M.H., Fedirko V., Jones D.P., Terry P.D., Bostick R.M. Antioxidant Micronutrients and Biomarkers of Oxidative Stress and Inflammation in Colorectal Adenoma Patients: Results from a Randomized, Controlled Clinical Trial. Cancer Epidemiology, Biomarkers & Prevention 2010, 19(3), 850-8.
30. Kim S., Keku T.O., Martin C., Galanko J., Woosley J.T., Schroeder J.C., Satia JA, Halabi S, Sandler RS. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Research 2008, 68(1), 323-8.
31. McCall K.A., Huang C., Fierke C.A. Function and mechanism of zinc metalloenzymes. Journal of Nutrition 2000, 130(5S Suppl), 1437S - 46S.
32. Berg J.M., Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science 1996, 271(5252), 1081-5.
33. Andreini C., Banci L., Bertini I., Rosato A. Counting the zinc-proteins encoded in the human genome. Journal of Proteome Research 2006, 5(1), 196-201.
34. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Research2000, 28(1), 235-42.
35. Blanchard R.K., Moore J.B., Green C.L., Cousins R.J. Modulation of intestinal gene expression by dietary zinc status: effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency. Proceedings of the National Academy of Sciences 2001, 98(24), 13507-13.
36. Moore J.B., Blanchard R.K., McCormack W.T., Cousins R.J. cDNA array analysis identifies thymic LCK as upregulated in moderate murine zinc deficiency before T-lymphocyte population changesJournal of Nutrition2001, 131(12), 3189-96.
37. Choi J.-W., Liu H., Shin D.H., Yu G.I., Hwang J.S., Kim E.S., Yun J.W. Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients. Proteomics 2013, 13(15), 2361-74.
38. Huijbers A., Velstra B., Dekker T.J.A., Mesker W.E., van der Burgt Y.E.M., Mertens B.J., Deelder AM, Tollenaar RA. Proteomic serum biomarkers and their potential application in cancer screening programsInternational Journal of Molecular Sciences. 2010, 11(11), 4175-93.
39. Kindermann B., Döring F., Pfaffl M., Daniel H. Identification of Genes Responsive to Intracellular Zinc Depletion in the Human Colon Adenocarcinoma Cell Line HT-29Journal of Nutrition 2004, 134(1), 57-62.
40. Schuebel K.E., Chen W., Cope L., Glöckner S.C., Suzuki H., Yi J.-M.,Chan T.A., Van Neste L., Van Criekinge W., van den Bosch S., van Engeland M., Ting A.H., Jair K., Yu W., Toyota M., Imai K., Ahuja N., Herman J.G., Baylin S.B. Comparing the DNA Hypermethylome with Gene Mutations in Human Colorectal Cancer. PLoS Genetics2007, 3(9), 1709-23.
41. Baylin S.B., Ohm J.E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nature Reviews Cancer 2006, 6(2), 107-16.
42. Ned R.M., Melillo S., Marrone M. Fecal DNA testing for Colorectal Cancer Screening: the ColoSure test. PLoS Currents 2011, 3:RRN1220.
43. Tänzer M., Balluff B., Distler J., Hale K., Leodolter A., Röcken C., Molnar B, Schmid R, Lofton-Day C, Schuster T, Ebert MP. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PloS One 2010, 5(2), e9061.
44. Marie Vedeld H., Andresen K., Andrassy Eilertsen I., Nesbakken A., Seruca R., Gladhaug I.P., Thiis-Evensen E., Rognum T.O., Boberg K.M., Lind G.E. The novel colorectal cancer biomarkers CDO1, ZSCAN18 and ZNF331 are frequently methylated across gastrointestinal cancers. International Journal of Cancer 2015, 136(4), 844-53.
45. Gumulec J, Masarik M, Krizkova S, Adam V, Hubalek J, Hrabeta J, et al. Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Current Medicinal Chemistry Journal 2011, 18(33), 5041-51.
46. Kizek R. Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and E6/E7 zinc finger protein. International Journal of Oncology2013, 43(6), 1754-62.
47. Thimmarayappa J., Sun J., Schultz L.E., Dejkhamron P., Lu C., Giallongo A., Merchant JL, Menon RK. Inhibition of growth hormone receptor gene expression by saturated fatty acids: role of Kruppel-like zinc finger factor, ZBP-89. Molecular Endocrinology 2006, 20(11), 2747-60.
48. Bai L., Merchant J.L. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cellsThe Journal of Biological Chemistry2000, 275(39), 30725-33.
49. O’Reilly J.-A., Fitzgerald J., Fitzgerald S., Kenny D., Kay E.W., O’Kennedy R., Kijanka GS. Diagnostic Potential of Zinc Finger Protein-Specific Autoantibodies and Associated Linear B-Cell Epitopes in Colorectal Cancer. PLoS ONE 2015, 10(4), e0123469.
50. Yan X., Yan L., Su Z., Zhu Q., Liu S., Jin Z.,Wang Y. Zinc-finger protein X-linked is a novel predictor of prognosis in patients with colorectal cancerInternational Journal of Clinical and Experimental Pathology 2014, 7(6), 3150-7.
51. Bell S.G., Vallee B.L. The metallothionein/thionein system: an oxidoreductive metabolic zinc link. European Journal of Chemical Biology 2009, 10(1), 55-62.
52. Eckschlager T., Adam V., Hrabeta J., Figova K., Kizek R. Metallothioneins and cancer. Current Protein and Peptide Science 2009, 10(4), 360-75.
53. Cousins R.J., Liuzzi J.P., Lichten L.A. Mammalian zinc transport, trafficking, and signals. The Journal of Biological Chemistry 2006, 281(34), 24085-9
. 54. Costello L.C., Fenselau C.C., Franklin R.B. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. The Journal of Inorganic Biochemistry 2011, 105(5), 589-99.
55. Pedersen M.Ø., Larsen A., Stoltenberg M., Penkowa M. The role of metallothionein in oncogenesis and cancer prognosis. Progress in Histochemistry and Cytochemistry 2009, 44(1), 29-64.
56. Arriaga J.M., Greco A., Mordoh J., Bianchini M. Metallothionein 1G and Zinc Sensitize Human Colorectal Cancer Cells to Chemotherapy. Molecular Cancer Therapeutics, 2014, 13(5), 1369-81.
57. Zucker S., Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer And Metastasis Reviews 2004, 23(1-2), 101-17.
58. Sipos F., Germann T.M., Wichmann B., Galamb O., Spisák S., Krenács T., Tulassay Z., Molnár B., Műzes G. MMP3 and CXCL1 are potent stromal protein markers of dysplasia-carcinoma transition in sporadic colorectal cancer. European Journal of Cancer Prevention, 2014, 23(5), 336-43.
59. Wang J.R., Gan W.J., Li X.M., Zhao Y.Y., Li Y., Lu X.X., Li J.M., Wu H. Orphan nuclear receptor Nur77 promotes colorectal cancer invasion and metastasis by regulating MMP-9 and E-cadherin. Carcinogenesis, 2014, 35(11), 2474-84.

pdfPDF