Regulation of human oncogenes’ expression by human papillomavirus (HPV) 16 E6 protein

Ana Maria Jimenez Jimenez, Kristyna Cihalova, Dagmar Chudobova, Branislav Ruttkay-Nedecky, Radek Vesely, Vojtech Adam, Rene Kizek


The human papillomaviruses (HPVs) are a diverse group of DNA viruses that establishes productive infections only in the laminated epithelium of the skin and in mucous membranes. More than 100 HPV types are known and the standard classification in types of high and low risk of these viruses was performed based on their cancer pathogenesis[1]. Most HPVs cause no symptoms, currently; the available studies show that the prevalence of asymptomatic genital HPV infections in the population is very high [2].Some types of HPVs can cause warts, while others can cause subclinical infections, which can lead to cervical cancer, in women or cancer of the anus and penis in men [3]. The most often transmission of HPVs occurs through skin to skin contact, so viral particles can penetrate first into mucosa and then, into epithelial cells [4]. Other HPV types affect non-anogenital localizations, such as the head and neck areas. The term head and neck cancer includes malignancy in an area that comprises the skin, oral cavity, salivary glands, lip, pharynx, larynx, nasal cavity, paranasal sinuses and soft tissues of the neck and ear [5,6]. The molecular mechanism of HPV carcinogenesis can be explained by the regulation and function of the two viral oncogenes E6 and E7. These oncogenes, increase the rate of cell division or inhibit programmed cell death, thereby they will increase the risk of malignant transformation [7,8].The great advances for fight against these viruses have been developed, such as prophylactic vaccination and high sensitivity-specificity methodologies of detection [9].

1. Schiffman, M.; Castle, P.E. Human papillomavirus - epidemiology and public health. Archives of Pathology & Laboratory Medicine 2003, 127, 930-934.
2. Trottier, H.; Burchell, A.N. Epidemiology of mucosal human papillomavirus infection and associated diseases. Pub. Health Genomics 2009, 12, 291-307.
3. Chen, R.W.; Aaltonen, L.M.; Vaheri, A. Human papillomavirus type 16 in head and neck carcinogenesis. Rev. Med. Virol. 2005, 15, 351-363.
4. Thomas, T.L.; Yarandi, H.N.; Dalmida, S.G.; Frados, A.; Klienert, K. Cross-cultural differences and sexual risk behavior of emerging adults. J. Transcult. Nurs. 2015, 26, 64-72.
5. Syrjanen, S. Human papillomavirus infections and oral tumors. Med. Microbiol. Immunol. 2003, 192, 123-128.
6. Syrjanen, S. Human papillomavirus (hpv) in head and neck cancer. J. Clin. Virol. 2005, 32, S59-S66.
7. Rose, B.R.; Thompson, C.H.; Tattersall, M.H.; O‘Brien, C.J.; Cossart, Y.E. Squamous carcinoma of the head and neck: Molecular mechanisms and potential biomarkers. Aust. N. Z. J. Surg. 2000, 70, 601-606.
8. Yuan, C.H.; Filippova, M.; Duerksen-Hughes, P. Modulation of apoptotic pathways by human papillomaviruses (hpv): Mechanisms and implications for therapy. Viruses-Basel 2012, 4, 3831-3850.
9. Ruttkay-Nedecky, B.; Jimenez, A.M.J.; Nejdl, L.; Chudobova, D.; Gumulec, J.; Masarik, M.; Adam, V.; Kizek, R. Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and e6/e7 zinc finger proteins. International Journal of Oncology 2013, 43, 1754-1762.
10. zur Hausen, H. Human papillomavirus & cervical cancer. Indian J. Med. Res. 2009, 130, 209-209.
11. Foguel, D.; Silva, J.L.; de Prat-Gay, G. Characterization of a partially folded monomer of the DNA-binding domain of human papillomavirus e2 protein obtained at high pressure. J. Biol. Chem. 1998, 273, 9050-9057.
12. Ustav, M.; Ustav, E.; Szymanski, P.; Stenlund, A. Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor-e1. Embo J. 1991, 10, 4321-4329.
13. Garnett, T.O.; Duerksen-Hughes, P.J. Modulation of apoptosis by human papillomavirus (hpv) oncoproteins. Arch. Virol. 2006, 151, 2321-2335.
14. Dayyani, F.; Etzel, C.J.; Liu, M.; Ho, C.H.; Lippman, S.M.; Tsao, A.S. Meta-analysis of the impact of human papillomavirus (hpv) on cancer risk and overall survival in head and neck squamous cell carcinomas (hnscc). Head Neck Oncol. 2010, 2.
15. Wiest, T.; Schwarz, E.; Enders, C.; Flechtenmacher, C.; Bosch, F.X. Involvement of intact hpv16 e6/e7 gene expression in head and neck cancers with unaltered p53 status and perturbed prb cell cycle control. Oncogene 2002, 21, 1510-1517.
16. Dyson, N.; Howley, P.M.; Munger, K.; Harlow, E. The human papilloma virus-16 e7- oncoprotein is able to bind to the retinoblastoma gene-product. Science 1989, 243, 934-937.
17. Syrjanen, S.; Rautava, J. Hpv and oral health response. J. Am. Dent. Assoc. 2012, 143, 442-444.
18. Smith, E.M.; Ritchie, J.M.; Pawlita, M.; Rubenstein, L.M.; Haugen, T.H.; Turek, L.P.; Hamsikova, E. Human papillomavirus seropositivity and risks of head and neck cancer. Int. J. Cancer 2007, 120, 825-832.
19. Strati, K.; Pitot, H.C.; Lambert, P.F. Identification of biomarkers that distinguish human papillomavirus (hpv)-positive versus hpv-negative head and neck cancers in a mouse model. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 14152-14157.
20. Yu, Z.K.; Geyer, R.K.; Maki, C.G. Mdm2-dependent ubiquitination of nuclear and cytoplasmic p53. Oncogene 2000, 19, 5892-5897.
21. Fujita, S.; Senba, M.; Kumatori, A.; Hayashi, T.; Ikeda, T.; Toriyama, K. Human papillomavirus infection in oral verrucous carcinoma: Genotyping analysis and inverse correlation with p53 expression. Pathobiology 2008, 75, 257-264.
22. Barbosa, M.S.; Lowy, D.R.; Schiller, J.T. Papillomavirus polypeptide-e6 and polypeptide-e7 are zinc-binding proteins. J. Virol. 1989, 63, 1404-1407.
23. Smith, E.M.; Pawlita, M.; Rubenstein, L.M.; Haugen, T.H.; Hamsikova, E.; Turek, L.P. Risk factors and survival by hpv-16 e6 and e7 antibody status in human papillomavirus positive head and neck cancer. Int. J. Cancer 2010, 127, 111-117.
24. Lin, K.Z.; Lu, X.L.; Chen, J.; Zou, R.M.; Zhang, L.F.; Xue, X.Y. E6-associated transcription patterns in human papilloma virus 16-positive cervical tissues. Oncol. Lett. 2015, 9, 478-482.
25. Shino, Y.; Shirasawa, H.; Kinoshita, T.; Simizu, B. Human papillomavirus type 16 e6 protein transcriptionally modulates fibronectin gene expression by induction of protein complexes binding to the cyclic amp response element. J. Virol. 1997, 71, 4310-4318.
26. Yugawa, T.; Handa, K.; Narisawa-Saito, M.; Ohno, S.I.; Fujita, M.; Kiyono, T. Regulation of notch1 gene expression by p53 in epithelial cells. Mol. Cell. Biol. 2007, 27, 3732-3742.
27. Adelstein, D.J. Role of human papillomavirus (hpv) biomarkers in head and neck squamous cell cancer and implications for clinical practice. Oral Oncol. 2011, 47, S11-S12.
28. Cruz, I.B.F.; Snijders, P.J.F.; Steenbergen, R.D.M.; Meijer, C.; Snow, G.B.; Walboomers, J.M.M.; vanderWaal, I. Age-dependence of human papillomavirus DNA presence in oral squamous cell carcinomas. Oral Oncol.-Eur. J. Cancer Pt. B 1996, 32B, 55-62.
29. Chen, P.M.; Cheng, Y.W.; Wang, Y.C.; Wu, T.C.; Chen, C.Y.; Lee, H. Up-regulation of foxm1 by e6 oncoprotein through the mzf1/nkx2-1 axis is required for human papillomavirus-associated tumorigenesis. Neoplasia 2014, 16, 961-971.
30. Janus, J.R.; Laborde, R.R.; Greenberg, A.J.; Wang, V.W.; Wei, W.; Trier, A.; Olsen, S.M.; Moore, E.J.; Olsen, K.D.; Smith, D.I. Linking expression of foxm1, cep55 and hells to tumorigenesis in oropharyngeal squamous cell carcinoma. Laryngoscope 2011, 121, 2598-2603.

pdfPDF