Nanomedicine in the future of HIV treatment

Zbynek Heger, Natalia Cernei, Vojtech Adam, Rene Kizek


The human immunodeficiency virus (HIV) is a lentivirus, causing acquired immunodeficiency syndrome (AIDS) [1]. HIV is still responsible for more than 25 million deaths worldwide and estimated 34 million people are infected with HIV across the globe [2]. From development of nucleoside analog reverse-transcriptase inhibitor zidovudine (AZT) in 1987 [3] significant advances in HIV therapy have been achieved. Moreover, subsequent development of highly active antiretroviral therapy (HAART), using a cocktail of antiretroviral drugs significantly improved the life expectancy and quality of patients suffering from HIV [4]. Despite the striking successes in disease management, HAART is still associated with disadvantages such as inability to inhibit the drug-resistant viral strains, serious adverse effects, high costs and inability to eradicate HIV from its reservoirs [5]. As such, killing HIV in cellular and tissue reservoirs represents a major challenge for eradicating HIV infection. The infection of a relatively few cell types makes it desirable to direct drug therapy only to infected cells. Moreover latently infected cells do not show any signs of infection on their surface. Thus, active targeting of HIV drugs to HIV-infected cells has been difficult to achieve [6]. The recent advances in the development of nanomaterials have shown promises to revolutionize diagnosis, treatment and prevention of many diseases/pathogens, including HIV. The present study discusses particularly the possibilities and advantages of nanoscaled materials and technologies in control of HIV.

1. Weiss, R.A., How does HIV cause AIDS. Science 1993, 260, 1273-1279.
2. De Cock, K.M.; Jaffe, H.W.; Curran, J.W., The evolving epidemiology of HIV/AIDS. Aids 2012, 26, 1205-1213.
3. Fischl, M.A.; Richman, D.D.; Grieco, M.H.; Gottlieb, M.S.; Volberding, P.A.; Laskin, O.L.; Leedom, J.M.; Groopman, J.E.; Mildvan, D.; Schooley, R.T., et al., The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex - a double-blind, placebo-controlled trial. New England Journal of Medicine 1987, 317, 185-191.
4. Wood, E.; Hogg, R.S.; Lima, V.D.; Kerr, T.; Yip, B.; Marshall, B.D.L.; Montaner, J.S.G., Highly active antiretroviral therapy and survival in HIV-Infected injection drug users. Jama-Journal of the American Medical Association 2008, 300, 550-554.
5. Puhan, M.A.; Van Natta, M.L.; Palella, F.J.; Addessi, A.; Meinert, C.; Studies Ocular Complications, A., Excess Mortality in Patients with AIDS in the Era of Highly Active Antiretroviral Therapy: Temporal Changes and Risk Factors. Clinical Infectious Diseases 2010, 51, 947-956.
6. Gunaseelan, S.; Gunaseelan, K.; Deshmukh, M.; Zhang, X.P.; Sinko, P.J., Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Advanced Drug Delivery Reviews 2010, 62, 518-531.
7. Boulaiz, H.; Alvarez, P.J.; Ramirez, A.; Marchal, J.A.; Prados, J.; Rodriguez-Serrano, F.; Peran, M.; Melguizo, C.; Aranega, A., Nanomedicine: Application Areas and Development Prospects. International Journal of Molecular Sciences 2011, 12, 3303-3321.
8. Doane, T.L.; Burda, C., The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews 2012, 41, 2885-2911.
9. Immordino, M.L.; Dosio, F.; Cattel, L., Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine 2006, 1, 297-315.
10. Heger, Z.; Cernei, N.; Blazkova, I.; Kopel, P.; Masarik, M.; Zitka, O.; Adam, V.; Kizek, R., gamma-Fe2O3 Nanoparticles Covered with Glutathione-Modified Quantum Dots as a Fluorescent Nanotransporter. Chromatographia 2014, 77, 1415-1423.
11. Heger, Z.; Kominkova, M.; Cernei, N.; Krejcova, L.; Kopel, P.; Zitka, O.; Adam, V.; Kizek, R., Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology. Electrophoresis 2014, 35, 3290-3301.
12. Grouzdev, D.S.; Dziuba, M.V.; Kurek, D.V.; Ovchinnikov, A.I.; Zhigalova, N.A.; Kuznetsov, B.B.; Skryabin, K.G., Optimized Method for Preparation of IgG-Binding Bacterial Magnetic Nanoparticles. Plos One 2014, 9.
13. Darroudi, M.; Hakimi, M.; Goodarzi, E.; Oskuee, R.K., Superparamagnetic iron oxide nanoparticles (SPIONs): Green preparation, characterization and their cytotoxicity effects. Ceramics International 2014, 40, 14641-14645.
14. Saiyed, Z.M.; Gandhi, N.H.; Nair, M.P.N., AZT 5 ‚-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. Journal of Neurovirology 2009, 15, 343-347.
15. Saiyed, Z.M.; Gandhi, N.H.; Nair, M.P.N., Magnetic nanoformulation of azidothymidine 5 ‚-triphosphate for targeted delivery across the blood-brain barrier. International Journal of Nanomedicine 2010, 5, 157-166.
16. Haran, G.; Cohen, R.; Bar, L.K.; Barenholz, Y., Transmembrane ammonium-sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochimica Et Biophysica Acta 1993, 1151, 201-215.
17. Kominkova, M.; Guran, R.; Rodrigo, M.A.M.; Kopel, P.; Blazkova, I.; Chudobova, D.; Nejdl, L.; Heger, Z.; Ruttkay-Nedecky, B.; Zitka, O., et al., Study of Functional Qualities of Different Types of Tailored Liposomes with
Encapsulated Doxorubicin using Electrochemical and Optical Methods. International Journal of Electrochemical Science 2014, 9, 2993-3007.
18. Lanao, J.M.; Briones, E.; Colino, C.I., Recent advances in delivery systems for anti-HIV1 therapy. Journal of Drug Targeting 2007, 15, 21-36.
19. Kim, S.; Scheerer, S.; Geyer, M.A.; Howell, S.B., Direct cerebrospinal-fluid delivery of an antiretroviral agent using multivesicular liposomes. Journal of Infectious Diseases 1990, 162, 750-752.
20. Jin, S.X.; Bi, D.Z.; Wang, J.; Wang, Y.Z.; Hu, H.G.; Deng, Y.H., Pharmacokinetics and tissue distribution of zidovudine in rats following intravenous administration of zidovudine myristate loaded liposomes. Pharmazie 2005, 60, 840-843.
21. Zhang, X.B.; Xie, J.Q.; Li, S.; Wang, X.T.; Hou, X.P., The study on brain targeting of the amphotericin B Liposomes. Journal of Drug Targeting 2003, 11, 117-122.
22. Freeling, J.P.; Koehn, J.; Shu, C.; Sun, J.G.; Ho, R.J.Y., Anti-HIV Drug-Combination Nanoparticles Enhance Plasma Drug Exposure Duration as Well as Triple-Drug Combination Levels in Cells Within Lymph Nodes and Blood in Primates. Aids Research and Human Retroviruses 2015, 31, 107-114.
23. Wiener, E.C.; Brechbiel, M.W.; Brothers, H.; Magin, R.L.; Gansow, O.A.; Tomalia, D.A.; Lauterbur, P.C., Dendrimer-based metal-chelates - a new class of magnetic-resonance-imaging contrast agents. Magnetic Resonance in Medicine 1994, 31, 1-8.
24. She, W.C.; Pan, D.Y.; Luo, K.; He, B.; Cheng, G.; Zhang, C.Y.; Gu, Z.W., PEGylated Dendrimer-Doxorubicin Cojugates as pH-Sensitive Drug Delivery Systems: Synthesis and In Vitro Characterization. Journal of Biomedical Nanotechnology 2015, 11, 964-978.
25. Jimenez, J.L.; Clemente, M.I.; Weber, N.D.; Sanchez, J.; Ortega, P.; de la Mata, F.J.; Gomez, R.; Garcia, D.; Lopez-Fernandez, L.A.; Munoz-Fernandez, M.A., Carbosilane Dendrimers to Transfect Human Astrocytes with Small Interfering RNA Targeting Human Immunodeficiency Virus. Biodrugs 2010, 24, 331-343.
26. Galan, M.; Rodriguez, J.S.; Jimenez, J.L.; Relloso, M.; Maly, M.; de la Mata, F.J.; Munoz-Fernandez, M.A.; Gomez, R., Synthesis of new anionic carbosilane dendrimers via thiol-ene chemistry and their antiviral behaviour. Organic & Biomolecular Chemistry 2014, 12, 3222-3237.
27. Reddy, B.P.K.; Yadav, H.K.S.; Nagesha, D.K.; Raizaday, A.; Karim, A., Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs-A Review. Journal of Nanoscience and Nanotechnology 2015, 15, 4009-4018.
28. Trivedi, R.; Kompella, U.B., Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 2010, 5, 485-505.
29. Spitzenberger, T.J.; Heilman, D.; Diekmann, C.; Batrakova, E.V.; Kabanov, A.V.; Gendelman, H.E.; Elmquist, W.F.; Persidsky, Y., Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. Journal of Cerebral Blood Flow and Metabolism 2007, 27, 1033-1042.
30. Orive, G.; Santos, E.; Pedraz, J.L.; Hernandez, R.M., Application of cell encapsulation for controlled delivery of biological therapeutics. Advanced Drug Delivery Reviews 2014, 67-68, 3-14.
31. Kuo, Y.C.; Chen, H.H., Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. International Journal of Pharmaceutics 2006, 327, 160-169.
32. Wong, H.L.; Chattopadhyay, N.; Wu, X.Y.; Bendayan, R., Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Advanced Drug Delivery Reviews 2010, 62, 503-517.

pdfPDF