Hemagglutinin structure, membrane fusion and virus entry

Petr Michalek, Ludmila Krejcova, Vojtech Adam, Rene Kizek*


Influenza A viruses belong to the order Orthomyxoviridae and are responsible for significant annual morbidity and mortality. They are classified serologically based on the antigenic properties of their surface glycoproteins: the hemagglutinin (HA) and the neuraminidase (NA) [1]. To date, 18 HA subtypes, caused by antigenic shift, have been determined [2, 3]. These subtypes can be divided into 6 clades and two groups and this variability makes it difficult to effectively aim any drug against this structure. Furthermore, also antigenic drift can strengthen the ability to escape the virus from effective blockage [4].

1. Bradley, K.C., et al., Analysis of Influenza Virus Hemagglutinin Receptor Binding Mutants with Limited Receptor Recognition Properties and Conditional Replication Characteristics. Journal of Virology, 2011. 85(23): p. 12387-12398.
2. Tong, S., et al., New World Bats Harbor Diverse Influenza A Viruses. Plos Pathogens, 2013. 9(10).
3. Wu, Y., et al., Bat-derived influenza-like viruses H17N10 and H18N11. Trends in Microbiology, 2014. 22(4): p. 183-191
. 4. Yang, J., et al., Influenza A Virus Entry Inhibitors Targeting the Hemagglutinin. Viruses-Basel, 2013. 5(1): p. 352-373.
5. Steinhauer, D.A., Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology, 1999. 258(1): p. 1-20.
6. Cheng, X., et al., Surface glycoproteins of influenza A H3N2 virus modulate virus replication in the respiratory tract of ferrets. Virology, 2012. 432(1): p. 91-98.
7. Ducatez, M.F., et al., Feasibility of reconstructed ancestral H5N1 influenza viruses for cross-clade protective vaccine development. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(1): p. 349-354.
8. Edinger, T.O., M.O. Pohl, and S. Stertz, Entry of influenza A virus: host factors and antiviral targets. Journal of General Virology, 2014. 95: p. 263-277.
9. Nasreen, S., et al., Seroprevalence of Antibodies against Highly Pathogenic Avian Influenza A (H5N1) Virus among Poultry Workers in Bangladesh, 2009. Plos One, 2013. 8(9).
10. Van Kerkhove, M.D., Brief literature review for the WHO global influenza research agenda - highly pathogenic avian influenza H5N1 risk in humans. Influenza and Other Respiratory Viruses, 2013. 7: p. 26-33.
11. Guo, L., et al., Human Antibody Responses to Avian Influenza A(H7N9) Virus, 2013. Emerging Infectious Diseases, 2014. 20(2): p. 192-200.
12. Bi, J.M., et al., Phylogenetic and Molecular Characterization of H9N2 Influenza Isolates from Chickens in Northern China from 2007-2009. Plos One, 2010. 5(9).
13. Skehel, J.J. and D.C. Wiley, Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annual Review of Biochemistry, 2000. 69: p. 531-569.
14. Stevens, J., et al., Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 2006. 312(5772): p. 404-410.
15. Boulay, F., et al., The influenza hemagglutinin precursor as an acid-sensitive probe of the biosynthetic-pathway. Embo Journal, 1987. 6(9): p. 2643-2650.
16. DuBois, R.M., et al., The Receptor-Binding Domain of Influenza Virus Hemagglutinin Produced in Escherichia coli Folds into Its Native, Immunogenic Structure. Journal of Virology, 2011. 85(2): p. 865-872.
17. Isin, B., P. Doruker, and I. Bahar, Functional motions of influenza virus hemagglutinin: A structure-based analytical approach. Biophysical Journal, 2002. 82(2): p. 569-581.
18. Xu, R., et al., Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic. Journal of Virology, 2010. 84(4): p. 1715-1721.
19. Garten, W. and H.D. Klenk, Understanding influenza virus pathogenicity. Trends in Microbiology, 1999. 7(3): p. 99-100.
20. Leikina, E., et al., Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. Embo Journal, 2002. 21(21): p. 5701-5710.
21. Gamblin, S.J. and J.J. Skehel, Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins. Journal of Biological Chemistry, 2010. 285(37): p. 28403-28409.
22. Rosenthal, P.B., et al., Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature, 1998. 396(6706): p. 92-96.
23. Russell, R.J., et al., HI and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology, 2004. 325(2): p. 287-296.
24. Harrison, S.C., Mechanism of membrane fusion by viral envelope proteins, in Virus Structure and Assembly, P. Roy, Editor 2005, Elsevier Academic Press Inc: San Diego. p. 231-261.
25. Chernomordik, L.V. and M.M. Kozlov, Protein-lipid interplay in fusion and fission of biological membranes. Annual Review of Biochemistry, 2003. 72: p. 175-207.
26. Garcia-Sastre, A., Influenza Virus Receptor Specificity Disease and Transmission. American Journal of Pathology, 2010. 176(4): p. 1584-1585.
27. Connor, R.J., et al., Receptor specificity in human, avian, and equine h2 and h3 influenza-virus isolates. Virology, 1994. 205(1): p. 17-23.
28. Ivanovic, T., et al., Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. Elife, 2013. 2.
29. Lakadamyali, M., M.J. Rust, and X.W. Zhuang, Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell, 2006. 124(5): p. 997-1009.
30. de Vries, E., et al., Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway. Plos Pathogens, 2011. 7(3).
31. Sieczkarski, S.B. and G.R. Whittaker, Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. Journal of Virology, 2002. 76(20): p. 10455-10464.
32. White, J.M. and I.A. Wilson, Anti-peptide antibodies detect steps in a protein conformational change - low-ph activation of the influenza-virus hemagglutinin. Journal of Cell Biology, 1987. 105(6): p. 2887-2896.
33. Stegmann, T., J.M. White, and A. Helenius, Intermediates in influenza induced membrane-fusion. Embo Journal, 1990. 9(13): p. 4231-4241.
34. Pak, C.C., M. Krumbiegel, and R. Blumenthal, Intermediates in influenza-virus pr/8 hemagglutinin-induced membrane-fusion. Journal of General Virology, 1994. 75: p. 395-399.
35. Chen, J., J.J. Skehel, and D.C. Wiley, N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(16): p. 8967-8972.

pdfPDF