Utilization of graphene oxide electrophoretic deposition for construction of electrochemical sensors and biosensors

Jana Vlachova, Jan Labuda, David Hynek, Ondrej Zitka and Rene Kizek


Graphene and graphene oxide (GO) has attracted increasing interest of many scientists because of its unique properties which find application across many fields. Enormous number of papers regarding to graphene and graphene oxide are focused on improvement of preparation of these materials, their deposition on substrates and formation of novel graphene structures which enhance detection abilities of electrodes as sensitivity and electron transfer. This mini-review focuses on the fabrication of GO-based electrodes prepared by electrophoretic deposition (EPD) and their utilization in electrochemical sensors and biosensors.

houbova

Figure 1: Schema of EPD of GO-Ni2+ sheets. Ni2+ ions decorated negatively charged GO sheet and such positively charged rGO-Ni2+ sheets in electric field move to cathode and deposit on it. (Reprinted with permission from ref 8. Copyright 2013 American Chemical Society.)

houbova

Figure 2: Images of electrode modified by graphene nanowalls obtained using field-emission scanning electron microscopy working at 15 kV. (Reprinted with permission from ref 36. Copyright 2012 American Chemical Society.)

houbova

Figure 3: Schema of urea sensing using GO-based bioelectrode. Electrons from urea decomposition are transferred via GLDH, α-ketoglutarate and [Fe(CN)6]3– to electrode surface. (Reprinted from ref 30.)

1. Cha, C.; Shin, S.R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 2013, 7, 2891-2897.
2. Pyun, J. Graphene oxide as catalyst: Application of carbon materials beyond nanotechnology. Angewandte Chemie International Edition 2011, 50, 46-48.
3. Jeon, S.-J.; Kwak, S.-Y.; Yim, D.; Ju, J.-M.; Kim, J.-H. Chemically-modulated photoluminescence of graphene oxide for selective detection of neurotransmitter by “turn-on” response. Journal of the American Chemical Society 2014, 136, 10842-10845.
4. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano research 2008, 1, 203-212.
5. Jasinski, J.B.; Ziolkowska, D.; Michalska, M.; Lipinska, L.; Korona, K.P.; Kaminska, M. Novel graphene oxide/manganese oxide nanocomposites. RSC Advances 2013, 3, 22857-22862.
6. Yang, X.; Tu, Y.; Li, L.; Shang, S.; Tao, X.-m. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Applied Materials & Interfaces 2010, 2, 1707-1713.
7. Maheshkumar, K.V.; Krishnamurthy, K.; Sathishkumar, P.; Sahoo, S.; Uddin, E.; Pal, S.K.; Rajasekar, R. Research updates on graphene oxide-based polymeric nanocomposites. Polymer Composites 2014, 35, 2297-2310.
8. Zhang, H.; Zhang, X.; Zhang, D.; Sun, X.; Lin, H.; Wang, C.; Ma, Y. One-step electrophoretic deposition of reduced graphene oxide and ni(oh)2 composite films for controlled syntheses supercapacitor electrodes. The Journal of Physical Chemistry B 2013, 117, 1616-1627.
9. Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia 2013, 9, 9243-9257.
10. Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y.M.; Zhang, H. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 2010, 4, 5263-5268.
11. Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027-1036.
12. Sharma, P.; Tuteja, S.K.; Bhalla, V.; Shekhawat, G.; Dravid, V.P.; Suri, C.R. Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing. Biosensors and Bioelectronics 2013, 39, 99-105.
13. Gao, H.; Duan, H. 2d and 3d graphene materials: Preparation and bioelectrochemical applications. Biosensors and Bioelectronics 2015, 65, 404-419.
14. He, H.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chemical Physics Letters 1998, 287, 53-56.
15. Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chemical Society Reviews 2010, 39, 228-240.
16. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 2010, 22, 3906-3924.
17. Brodie, B.C. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
18. Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft 1898, 31, 1481-1487.
19. Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80, 1339-1339.
20. Ciszewski, M.; Mianowski, A. Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids. CHEMIK 2013, 67, 267-274.
21. Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 2012, 112, 6027-6053.
22. Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463-470.
23. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and langmuir-blodgett films. Nat Nano 2008, 3, 538-542.
24. Ramesha, G.K.; Sampath, S. Electrochemical reduction of oriented graphene oxide films: An in situ raman spectroelectrochemical study. The Journal of Physical Chemistry C 2009, 113, 7985-7989.
25. Eda, G.; Lin, Y.-Y.; Miller, S.; Chen, C.-W.; Su, W.-F.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters 2008, 92, 233305.
26. Dua, V.; Surwade, S.P.; Ammu, S.; Agnihotra, S.R.; Jain, S.; Roberts, K.E.; Park, S.; Ruoff, R.S.; Manohar, S.K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angewandte Chemie International Edition 2010, 49, 2154-2157.
27. Chavez-Valdez, A.; Shaffer, M.S.P.; Boccaccini, A.R. Applications of graphene electrophoretic deposition. A review. The Journal of Physical Chemistry B 2013, 117, 1502-1515.
28. Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (epd). Progress in Materials Science 2007, 52, 1-61.
29. Wu, Z.-S.; Pei, S.; Ren, W.; Tang, D.; Gao, L.; Liu, B.; Li, F.; Liu, C.; Cheng, H.-M. Field emission of single-layer graphene films prepared by electrophoretic deposition. Advanced Materials 2009, 21, 1756-1760.
30. Abraham, S.; Ciobota, V.; Srivastava, S.; Srivastava, S.K.; Singh, R.K.; Dellith, J.; Malhotra, B.D.; Schmitt, M.; Popp, J.; Srivastava, A. Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. Analytical Methods 2014, 6, 6711-6720.
31. Lu, T.; Pan, L.; Li, H.; Nie, C.; Zhu, M.; Sun, Z. Reduced graphene oxide–carbon nanotubes composite films by electrophoretic deposition method for supercapacitors. Journal of Electroanalytical Chemistry 2011, 661, 270-273.
32. Zhang, Z.; Gu, S.; Ding, Y.; Shen, M.; Jiang, L. Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosensors and Bioelectronics 2014, 57, 239-244.
33. Neirinck, B.; Fransaer, J.; Vleugels, J.; Van der Biest, O. Aqueous electrophoretic deposition at high electric fields. Key Engineering Materials 2009, 412, 33-38.
34. Chávez-Valdez, A.; Boccaccini, A.R. Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods. Electrochimica Acta 2012, 65, 70-89.
35. Subramanian, P.; Niedziolka-Jonsson, J.; Lesniewski, A.; Wang, Q.; Li, M.; Boukherroub, R.; Szunerits, S. Preparation of reduced graphene oxide-ni(oh)2 composites by electrophoretic deposition: Application for non-enzymatic glucose sensing. Journal of Materials Chemistry A 2014, 2, 5525-5533.
36. Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012, 6, 2904-2916.
37. Akhavan, O.; Ghaderi, E.; Rahighi, R.; Abdolahad, M. Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon 2014, 79, 654-663.
38. Srivastava, S.; Kumar, V.; Ali, M.A.; Solanki, P.R.; Srivastava, A.; Sumana, G.; Saxena, P.S.; Joshi, A.G.; Malhotra, B.D. Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 2013, 5, 3043-3051.
39. Basu, J.; Datta, S.; RoyChaudhuri, C. A graphene field effect capacitive immunosensor for sub-femtomolar food toxin detection. Biosensors and Bioelectronics 2015, 68, 544-549.
40. Subramanian, P.; Lesniewski, A.; Kaminska, I.; Vlandas, A.; Vasilescu, A.; Niedziolka-Jonsson, J.; Pichonat, E.; Happy, H.; Boukherroub, R.; Szunerits, S. Lysozyme detection on aptamer functionalized graphene-coated spr interfaces. Biosensors and Bioelectronics 2013, 50, 239-243.


pdfPDF