Wood Anatomy

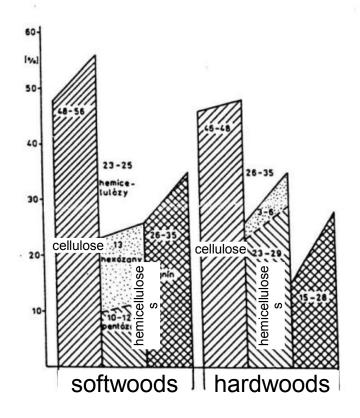
Chemical composition of wood presentation

Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

What is wood like?

Wood

- complex of chemical components, especially of biopolymers
- chemical composition \rightarrow submicroscopic structure \rightarrow microscopic structure


Primary components (90–97 %)

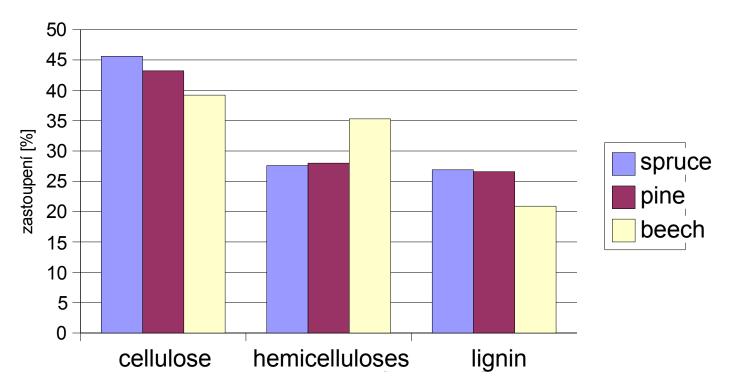
- polysaccharide fractions: cellulose (35–55 %) a hemicelluloses (20–35 %)
- *polyfenolic fraction:* lignin (15–36 %)

Secondary components (3–10 %)

- inorganic substances (ash)
- organic substances

Percentage of primary components in softwoods and hardwoods

Wood

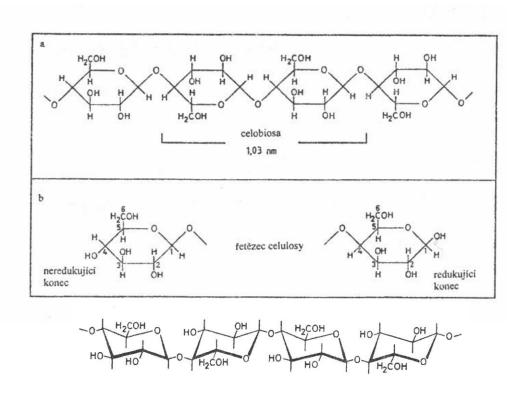

- elementary composition of wood (= amount of C, H, O):
 - C 49.5 % (average values)
 - H 6.3 %
 - O 44.2 %

Elementary composition is almost the same for all of wood species.

WOOD	Elements (%)			
	C	н	0	N
spruce	50,3-51,4	6,1-6,3	41,6-43,1	0,1-0,9
fir	50,4-51,3	5,9–6,0	43,4-44,0	0,1-0,8
pine	49,5-49,6	6,4	44,0-44,4	0,9
oak	49,4–50,6	6,1-6,2	41,8-44,5	1,2
beech	48,5-50,9	6,1-6,3	42,1-45,2	0,12-0,9

Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

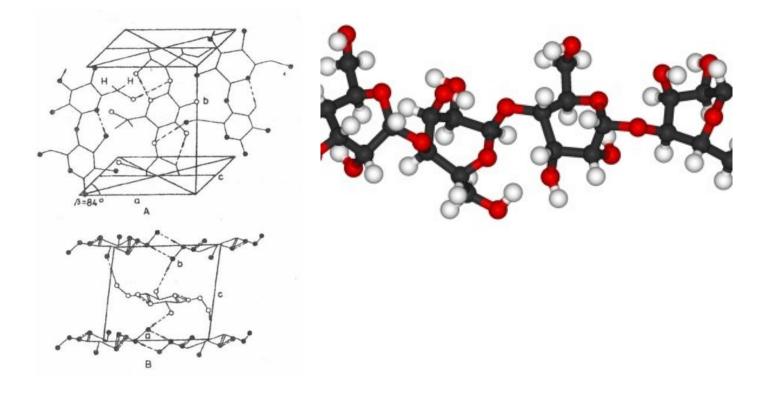
Primary components in different wood species



Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Cellulose

- the most abundant substance in the world
- it forms the skeleton of cells
- in *softwoods:* 46–55 %, in *hardwoods:* 41–48 %
- the basic unit: anhydro-D-glucopyranose residues -
- degree of polymerization: 5,000–14,000


Cellulose

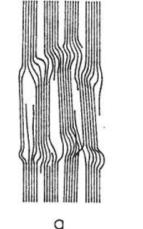
Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Cellulose

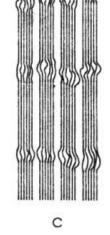
-- hydrogen bonds between adjacent cellulose chains \rightarrow 3D structure

Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Cellulose


Two structural types:

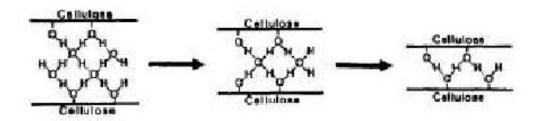
- crystalline form (70 %) regular structure
- amorphous form (30 %) without 3D structure


Cellulose

Higher amount of crystalline form results in:

- \rightarrow higher wood density
- \rightarrow higher modulus of elasticity (MOE)
- \rightarrow higher strength in tension
- \rightarrow lower shrinkage/swelling

b


Basic models of cellulose chains arrangements in fibrils.

10 Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Cellulose

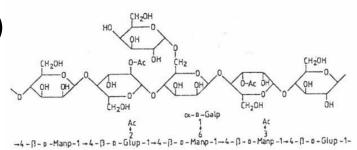
Molecules of water are linkaged between OH-groups \rightarrow cellulose chains are moving away \rightarrow wood swelling

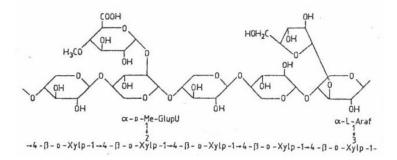
The reverse process is **wood shrinkage**.

The proces of molecules of water removing = shrinkage. The right figure: no water content amount.

Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Hemicelluloses (Polyoses)

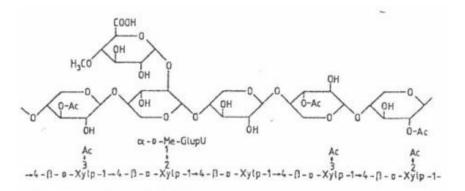

- = a mixture of other polysaccharides in wood
- degree of polymerization: 100-200
- heteropolymers
 - = more than one type of basic unit (monomer)


Hemicelluloses (20-35 %)

- categories:

a) xylans

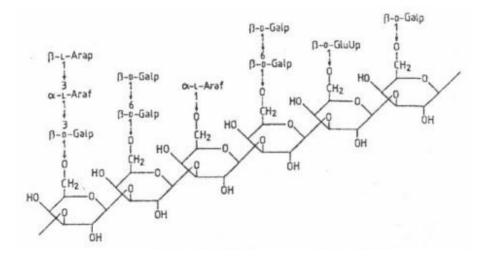
hardwoods (up to 35 %) - main units: *pentoses* - D.P. 100-200 *softwoods (10–15 %)* - D.P. 70–130



Hemicelluloses

b) glucomanans

main units: hexoses
D.P. 60–70
softwoods (up to 20 %)
hardwoods (3–5 %)



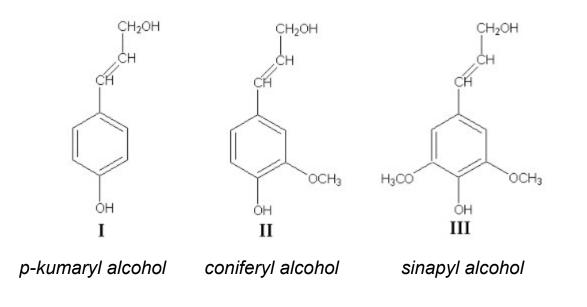
14 Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Hemicelluloses

c) galactans

- low content amount in pine, beech, birch, acer: 0,5–3 %
- in wood of larch: 10-20 %
- higher content amount in compression wood

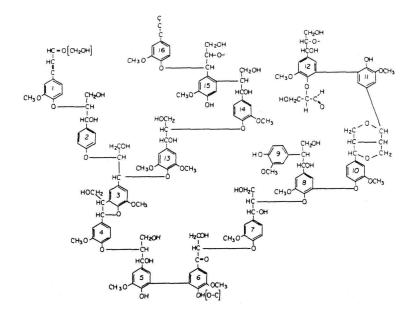
Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018


Lignin (15–36 %)

- next to cellulose the most abundant organic substance in the world
- 3D macromolecules
- chemical bonds especially to hemicelluloses
- irregular distribution within cell wall
- softwoods (24-33 %), hardwoods (19-28 %)

Lignin

Lignin is amorphous polyphenolic substance


Main units (precursors):

Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Lignin

- no regular pattern in its structure \rightarrow a mixture of heterogeneous substances
- its structure is presented by models only

Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

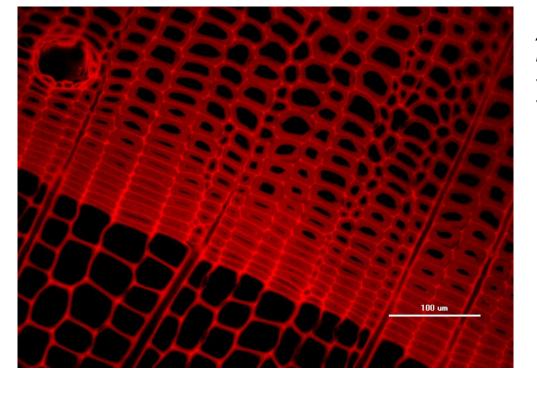
Lignin

softwoods

- guajacyl lignin = coniferyl alcohol (95 %) + p-kumaryl alcohol

hardwoods

- *guajacyl-syringil lignins* = coniferyl alcohol + sinapyl alcohol
- higher variability in its structure


Wood Anatomy Primary components

Lignin

It affects wood properties:

- improves wood stiffness
- it improves wood strength properties (compression, bending)
- it lowers wood permeability for water
- it improves wood resistance to fungi

Lignin – autofluorescence

Autofluorescence of lignin. Transverse section of wood of spruce.

Supported by the European Social Fund and the state budget of the Czech Republic, project InoBio – CZ.1.07/2.2.00/28.0018

Secondary components (3-10 %)

Substances in small amount in wood volume.

They can be located in

- cell walls
- intracellular spaces
- in lumina

Their presence can affect wood colour, odour, resistance.

- a) organic compounds (extractives) 1–5 % of wood volume
- b) inorganic compounds (ash) up to 1 % of wood volume

inorganic compounds

- salts of Ca, K, Mg
- in form of crystals
- up to 25 % of them may be removed from wood by water
- salts of Ca: up to 50 %
- very small amount of Mn, Na, P, Cl

organic compounds

saccharids

- pectins
- starch (= amylosa + amylopectin) important cell food

fenolic compounds

improves resistance of wood

- lignans
- flavanoids
- stilbens keep colours same
- tannins in chestnut or oak heartwood

organic compounds

terpens

- in softwoods with resin canals

other compounds

- many other substances of low amount
- for example: proteins, alcaloids etc.