Wood Anatomy

Macroscopic structure of wood presentation

Course content

wood structure

- macroscopic structure
- microscopic structure
- submicroscopic structure
- wood defects
- wood formation
- chemical composition of wood

Bibliography

HOADLEY, R. B.: Identifying wood. Newtown 1990. 223 s.

PANSHIN, A. J. – ZEEUW DE, C. Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada. 4. vyd. New York: McGraw-Hill, 1980. 722 s. ISBN 0-07-048441-4.

WAGENFÜHR, R.: Holz. Anatomie – Chemie – Physik. Anatomie des Holzes. DRW-Verlag Weinbrenner GmbH & Co., 1999, 188 s.

Course completion

- 1) Practical test of wood identification (both macro and micro)
- 2) Written exam

Wood – definition

What is wood like?

biological point of view

Wood (xylem) is a complex of plant tissues whose cells have lignified walls.

chemical point of view

Natural substance consists mainly of cellulose, hemicelluloses and lignin.

Wood

Where is wood in nature?

Answer: mostly in woody species

Woody species (plantae lignosae)

= plants that retain some living woody material at or above ground level through the non-growing season

- tree (arbor)
- liana (liana)
- shrub (frutex)
- subshrub (hemixyla, suffrutex)

Classification of the spermatophytes

Kingdom: Plant (Plantae)

class: Gymnospermae

class: Angiospermae

subclass: Monocotyledonae

subclass: Dicotyledonae

Conifers

spruces, pines, ...

Characteristics

- seeds produced in cones
- needle-like leaves
- many are evergreen

Broadleaved trees

maples, oaks, elms, ...

Characteristics

- seeds produced in fruits
- broad leaves with net-like veins
- many are deciduous

Trees and their wood

Conifers > *softwoods*

Broad leaved trees *hardwoods*

Softwoods vs. hardwoods

Softwoods

- only ~400 species of softwood trees

Hardwoods

- tens of thousands species of hardwood trees

Example: Norway spruce (Picea abies)

Kingdom: Plant (Plantae)

class: Gymnospermae

order: Coniferales

family: Pinaceae

genus: Picea

species: abies

Scientific names

Common name × scientific name

Norway spruce (Picea abies)

Trade name (= commercial names)

- used to designate lumber
- place of origin occasionally creeps into the trade name
- one name for more than one species

example

trade names: mahagon sapelli, sapelli, sapeli, aboudikro, sapele, penkwa, assié, lifaki, dilolo, undianuno

scientific name: *Entandrophragma cylindricum*

Trade name problems

! one species with more trade names

! one trade name for more species

example

trade names: mahagon sapelli, sapelli, sapeli, aboudikro, sapele, penkwa, assié, lifaki, dilolo, undianuno

scientific name: Entandrophragma cylindricum

Tree species vs. kind of wood

Species defined on external characteristics i.e. *fruits, leaves, bark* NOT on wood anatomy!

Usually it is not possible to identify isolated pieces of wood to species level!

Main parts of a tree

Transverse section of a stem

Transverse section of a stem

bark (periderm)

outer - cork *(suberoderm, felem)* - green bark *(feloderm)* inner = lýko *(phloem)*

cambium

= meristematic tissue

wood (xylem)

= meristematic tissue

pith

= central rare tissue

Pith

pith shapes

elliptic – lime, maple, elm *triangular* – alder, beech, birch *tetragonal* – ash *lobate* – oak

asterisk-like – pine

Common diameter

2–5 mm

Main sections in a stem

Main sections in a stem

Gross features of wood

- Structural features
 - growth rings
 - rays
 - vessels
 - resin canals
 - pith flecks
 - knots
- Additional features
 - colour (heartwood & sapwood)
 - lustre
 - odour
 - density & hardness

Growth ring is an radial increment of wood per growing period

earlywood

- lighter, lower density

latewood

- darker, higher density

Groups of woods according to the structure of growth rings:

softwoods

ring-porous hardwoods diffuse-porous hardwoods

Appearance of rays

a) wide rays

b) narrow rays

c) very narrow rays

Vessels are long tubes-like cells oriented parallel to the stem axis. Function: transport of water

ring-porous hardwoods – macrovessels & microvessels

diffuse-porous hardwoods – microvessels only

Wood Anatomy

Vessels

semiring-porous hardwoods – only macrovessels (Walnut) or only microvessels (cherry, plum)

Resin canals

Resin canals

Resin canals (or resin ducts) are small intercellular spaces where special parenchyma cells produce resin.

Constant feature only in:

- spruce (*Picea* spp.)
- pine (*Pinus* spp.)
- larch (Larix spp.)
- Douglas-fir (*Pseudotsuga* spp.)

Wood Anatomy

Resin canals

Appearance

Additional features

Colour (heartwood & sapwood)

Colour (heartwood & sapwood)

Colour (heartwood & sapwood)

sapwood trees

hornbeam, alder, birch, maple, pear tree

heartwood trees

larch, pine, oak, black locust, elm, cherry, plum

ripewood trees

fir, spruce, beech, lime

sapwood & light heartwood & heartwood trees ash, willow

light heartwood

Lustre

Lustre = ability to reflect light

- lustrous woods
 - plane tree, maple, beech, elm
- dull woods
 - hornbeam, apple tree

Odour

Odour in wood is due to the volatility of extraneous substances

- disagreeable odour
 - lime
- pleasant odour
 - juniper

Pith flecks

Pith flecks – parenchyma tissue produced by cambium when attacked by insects

Frequent occurrence in: birch, alder, pear, horse chestnut

Knots

Wood density

a) low density woods (ρ_{12} < 540 kg.m⁻³) spruce, fir, pine, poplar, alder, lime, ...

b) middle density woods (ρ_{12} = 540–750 kg.m⁻³) larch, beech, oak, elm, ash, plane wood, walnut

c) high density woods (ρ_{12} > 750 kg.m⁻³) black locust, hornbeam

The lowest density wood: balsa ($\rho_0 = 130 \text{ kg.m}^{-3}$) The highest density wood: guajak ($\rho_0 = 1300 \text{ kg.m}^{-3}$)

Hardness

a) soft woods (H_J < 40 MPa) spruce, fir, pine, poplar, alder, linden, ...

b) middle hard woods (H_J = 40–80 MPa) larch, beech, oak, elm, ash, plane wood, walnut

c) hard woods (H_J = 81–100 MPa) black locust, hornbeam