N o

*
M
, * * [ ) »
evropsky [EEENENR y S
socialni MINISTERSTVO $KOLSTVI, OP Vzdélavani

fondvCR EVROPSKA UNIE MLADEZE A TELOVYCHOVY pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDELAVANI

Tento projekt je spolufinancovan Evropskym socialnim fondem a Statnim rozpoétem CR
InoBio — CZ.1.07/2.2.00/28.0018



Ny

o [ ]
* X % | g |
* * A®
>* = ]
social fund in the MINISTRY OF EDUCATION,  OP Education

czech republic  EUROPEAN UNION YOUTH AND SPORTS for Competitiveness

INVESTMENTS IN EDUCATION DEVELOPMENT

Model Selection

Juliette Chamagne

Institute of Evolutionary Biology and Environmental
Sciences

University of Zurich



Recap

e Linear Models (Im) assume:
— Independence
— Normality
— Homogeneity
 Generalized Linear Models (glm) allow:
— Linear predictor (Y~ a + b*X; + c*X,...)
— Family distribution (variance)

— Link function (mean)

e GLMs work with:
— Continuous but positive (squewed) data (Gamma)
— Count data (Poisson)

— Proportion data or presence/absence data (binomial)



Model Selection

Compare GLMs on the same data, with the same
distributions, but with different link functions

Compare GLMs with different predictors, to see which
one(s) explain the data better



P Value Model Selection

 Run a nested sequence of models to
successively compare and test terms in the

models

 Omit non-significant terms in a process of
model simplification

* Aim for a parsimonious Minimal Adequate
(simplest) Model



Critique of Model Selection by
hypothesis testing

e Subjective P-level
* Problem of multiple comparisons
* Problematic for non-nested models



Friedman’s Paradox

 Even when the response is independent of the
explanatory variables...

e When there are many explanatory variables
(~50) variable selection methods will give high
R?s and many significant F and t values with
coefficients biased away from zero.

e Partial resolution: Keep the number of
candidate models small relative to the number
of parameters to be estimated.



Model-selection uncertainty

e Remember that a given dataset is always a
special case which may contain some unique
(not general) effects that would not be
present in replicated datasets of the same

type.
e Avoid tailoring a model too much to a given
dataset (over-fitting)



Maximum Likelihood

Given a set of data and a chosen a model (we
could try and compare several)...

Maximum likelihood is a method for determining
which parameters of the model produce the best
model fit, as measured by deviance, and make
the data most likely to be observed.

No exact solutions but iterative approximations.
The formula for the deviance changes for

C
H

ifferent types of data/error distributions
owever, for normal data the maximum

kelihood estimate is the least squares estimate.



AlC

Decreases as more terms are
added

AIC = =2 In[£(0]Y)] + z/<

Increases as more terms are
added

Trade-off between bias and variance (~complexity), or, under fitting and
over f)itting, that is fundamental to the principle of parsimony (Occam’s
razor

Usually positive but can be negative, smaller values indicate better models

Absolute value is of no interest due to relative scale that is also strongly
dependent on sample size

Recommended to report and compare AIC differences
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Comparing models by AlIC differences

Models Within Two Units of the Best Model

model.

rather i1s “close” only because it adds 1 parameter and therefore will be withi

not improved.

Models having A; within about 0-2 units of the best model should be
examined to see whether they differ from the best model by 1 parameter and
have essentially the same values of the maximized log-likelihood as the best

In this case, the larger model is not really supported or competitive, but

n

2 A; units, even though the fit, as measured by the log-likelihood value, is
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Advantages of AIC

AIC can be used to compare non-nested
models while likelihood ratio tests cannot.

Allows ranking of models
Allows ratio of evidence for different models

Allows multimodel inference using parameter
weighted averages

Order of calculating AlCs for different models
does not matter



Limits on Model Comparison

AIC can only be used to compare different models
applied to exactly the same dataset.

Different transformations cannot be used when
comparing models using AlC.

Instead use GLMs to compare models with
different link functions.

But, is only straight-forward when using the same
error distribution in the GLM (see B&A p.318;
Faraway 2006 p. 138).

Cannot know how close to the ‘true’ model
candidate models are (even if truth is assumed to
exist), only their relative rankings



Pitfalls

Large numbers of models for small datasets

Bad candidate
Models within

models and subset models
2 IT units are approximately

equally good but may contain 1 useless
parameter (since the penalty term is 2p)

Use of AIC wit
AIC 'best' mod

n small samples
els may contain parameters

with little support (estimates close to zero

etc.).



Important things to keep in mind

e Models have to make sense

 Choosing the best model between two bad
models is still bad

 Don’t try to fit all possible models. Select a
few that correspond to the hypotheses you
want to test.



Model selection in R: P value

> nmodl <- glmY ~ X1 + X2, data)
> nmod2 <- glmyY ~ X1 + X2 + X1: X2, data)
> anova( nodl, nod2)

# gives a p-value for how different the two models are

# if the difference is significant, take the model with the
smallest deviance (or the residual SS in case of Im)

# if there is no difference, take the simpler model
# mod1 is “nested” within mod?2



Model selection in R: AlIC

> modl <- glmY ~ X1 + X2, data)
> mod2 <- glmY ~ X1 + X3 + X4 + X1: X3, data)
> Al C( nodl, nod2)

# the lower the AIC, the better model

# mod1 and mod2 don’t have to be nested

# mod1 and mod2 should still be working with the same
dataset, and the same Y



Example in R: the forest dataset

> nodl <- I m(Prod ~ SpDiv, data=forest)

> nod2 <- Inm(Prod ~ SpDiv + ForType, data=forest)
> anova(nodl, nod2)

Anal ysi s of Variance Tabl e

Model 1: Prod ~ SpD v
Model 2: Prod ~ SpDiv + ForType

Res. Df  RSS Df Sum of Sq F Pr ( >F)
1 103 6. 3835
2 101 2.0374 2 4.346 107. 72 < 2.2e-16 ***

# the two models are significantly different, so take the one with the smallest
Residual SS: it means that it has less unexplained variance.



Example in R: the forest dataset

> nmodl <- I m(Prod ~ SpDiv, data=forest)

> nmod2 <- Im(Prod ~ SpDiv + For Type, dat a=forest)
> nmod3 <- Im(Prod ~ SpDiv * For Type, dat a=forest)
> nmod4 <- I m(Prod ~ SpDiv, data=forest)

> Al C(nodl, nod2, nod3, nod4)

df Al C
nodl 3 9. 950882
nod2 5 -105.961317
nod3 7 -133.809405
nod4 3 9. 950882
# same result with the AIC criterion: mod3 has a better AIC (lower)
# here all models don’t have to be nested (mod4 is not nested in mod1)



Exercises In R

 For every dataset you've been working on this
week (GLMs), use the AIC() to compare the
different models.

e Does the result of the AIC make sense?
Compare with the diagnostic plots, i.e.
plot(model), and with what you see
graphically, i.e. gplot(X)Y,
geom=c(“point”,”smooth”), method(link))
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