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Recap

• Linear Models (lm) assume:

– Independence

– Normality

– Homogeneity

• Generalized Linear Models (glm) allow:

– Linear predictor (Y ~ a + b*X1 + c*X2…)

– Family distribution (variance)

– Link function (mean)
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Continuous positive data: 

Gamma Distribution
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Continuous positive data: 

Gamma Distribution
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> Janka.lm <- lm(Hardness ~ Density, data = Janka)

> Janka.glm.Gauss <- glm(Hardness ~ Density, data = Janka, family = 
gaussian(link=" identity"))

> summary(Janka.glm.Gauss)

Call:

glm(formula = Hardness ~ Density, family = gaussian (link = "identity"), 

data = Janka)

Deviance Residuals: 

Min       1Q   Median       3Q      Max  

-338.40   -96.98   -15.71    92.71   625.06  

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -1160.500    108.580  -10.69 2.07e-12 ***

Density        57.507      2.279   25.24  < 2e-16 * **

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 



Continuous positive data: 

Gamma Distribution

January 30, 2014 5Statistics for Free: GLMs

> Janka.glm.Gamma <- glm(Hardness ~ Density, data = J anka , family = 
Gamma(link = "identity"))
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Continuous positive data: 

Gamma Distribution
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> Janka.glm.Gamma <- glm(Hardness ~ Density, data = J anka , family = 
Gamma(link = "identity"))
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Continuous positive data: 

Gamma Distribution
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> Janka.glm.Gamma <- glm(Hardness ~ Density, data = J anka , family = 
Gamma(link = ”sqrt"))
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Continuous positive data: 

Gamma Distribution
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> Janka.glm.Gamma <- glm(Hardness ~ Density, data = J anka , family = 
Gamma(link = ”sqrt"))
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Count data

• Data are integers (whole numbers): 0, 1, 2, 3…

• Data are never negative.

• Residuals are restricted in value (can get lines of 

residuals in residual plots).

• Zeros are often common. 
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Count data

We know how many times something happened but not 

how many times it did not. Examples:

number of children per family

number of doctor visits per year

number of species per area

number of individuals from one species per area

tree cover (from 1 to 10) of Tsuga canadensis
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Count data
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Tree cover Occurrence

1 39

2 71

3 166

4 110

5 92

6 80

7 108

8 60

9 19

10 1



Count data
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Count data

• Log-linear models: GLMs with a Poisson errors 

and log link function.
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Mean Variance



Count data

• Log link function prevents negative counts since the 

fitted values are antilogs (exp) and must be positive. 
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Mean



Count data

Poisson distribution is a one parameter distribution, 

variance is defined as equal to the mean – when using 

the Poisson we make this assumption for our data. 
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Variance



The Poisson Distribution

• The the variance, σ2 is equal to the mean, µ (mu)

• Zero term: P(0) = e-µ
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The Poisson Distribution
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Mean = 4.66
Variance = 4.47

The Poisson Distribution



Count data
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• Residual deviance is assumed to equal the 
residual degrees of freedom and the scale 
parameter is set as one

• Check for over-dispersion and deal with it 
using QML (Quasi Maximum Likelihood)

• Deviance is once again estimated by an 
iterative weighted least squares maximum 
likelihood procedure with its distribution 
approximately following the chi-squared 
distribution.
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Count data in R

glm(Y ~ X, family=poisson (link = log)) 
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Count data in R

If overdispersion (Residual deviance higher 

than residual degrees of freedom)

glm(Y ~ X, family=quasipoisson) 
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Count data in R
> glm3 = glm(cover~elev,data=dat2,family=poisson)
> summary(glm3)

Call:
glm(formula = cover ~ elev, family = poisson, data = dat2)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-2.0673  -0.8250  -0.3048   0.9991   2.1347  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  1.546e+00  5.135e-02  30.115   <2e-16 ***
elev -8.448e-06  5.471e-05  -0.154    0.877    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

( Dispersion parameter for poisson family taken to be 1)

Null deviance: 749.25  on 745  degrees of freedom
Residual deviance: 749.23  on 744  degrees of freedom
AIC: 3214.2
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Exercise: the parkgrass experiment

• Counts of species in plots of the Park Grass 

experiment

glm(species ~ biomass, poisson (link = log)) 
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Counts of species in plots of the Park Grass experiment

Harvesting in 1941

The Park Grass Experiment
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Counts of species in plots of the Park Grass experiment

The Park Grass Experiment
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One of the longest running 
experiment: since 1856

Rothamsted experimental 
station (England)

Effects of fertilizers on 
Crop productivity
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