Twenty years of invasion

Round goby Neogobius melanostomus

- Neogobius melanostomus (Pallas 1814)
- Family Gobiidae
- one of the most wide-ranging invasive fish on earth

Neogobius melanostomus melanostomus (Black Sea)

Neogobius melanostomus affinis (Caspian Sea)

MORPHOLOGY

- elongate body
- terminal mouth, thick lips
- Sexual dimorphism
 - males have a larger size at age, enlarged cheeks and darker colouration
 - Both sexes have an erectile urogenital papilla between the anus and the base of the anal fin.
 - The female papilla is broad and blunt ($0\cdot3-0\cdot5$ mm wide, $0\cdot2-0\cdot4$ mm long), whereas the male papilla is longer ($0\cdot3-0\cdot6$ mm)

Biology

- Prefer shallow, brackish waters but also occur in fresh waters
- in lagoons and lakes, large rivers, harbors, on sand or rock bottom; mostly found on well vegetated or rock bottom
- Can tolerate a temperature range of 0 to 30 C, but mainly thrive in warm temperate waters
- able to tolerate low oxygen content waters for several days
- Oviparous, with demersal eggs
- Longevity up to 4 years

- river regulation, the connection of contiguous basins by canals,
- ballast water transport by ships
- Vistula River, the Dnieper, Dniester and Don Rivers, the Moscow River and the Danube River through Croatia, Serbia, Hungary and Austria

- first discovered in the Baltic Sea (via ballast water)
- Genetic analysis of 6 newly established populations in the southern Baltic Sea
- Despite close proximity to one another (30 km of each other), 10 of 15 genetic comparisons between these sites were significantly different
- indicating rapid, site-specific genetic differentiation after only 10 generations
- *N. melanostomus* rapidly adapt to new habitats

REPRODUCTION

- multiple spawners, typically spawning every 3–4 weeks from April through to September
- Males guard nests and may not feed during spawning, suggesting most males die after one spawning season

- females may repeat spawning during a season, every 18-20 days
- body of males entirely black during this season
- Adhesive eggs deposited on stones, shells and aquatic plants
- males guard eggs until hatching and usually die after spawning season.
- Egg clutches are supposed to be occasionally transported attached to the hull of ships, facilitating introduction to other areas.

- Up to 10 000 eggs from four to six females may be present in a nest
- Fertilization and hatching rates are as high as 95%
- Eggs and larvae are relatively large (3·2 mm diameter) compared to other gobiid species

AGE AND GROWTH

- Neogobius melanostomus growth rates
 are highly variable and site specific
- males are larger than females
- *N. melanostomus* in the southern Baltic Sea have a longer life span (up to age 6 years) and larger size at age

THERMAL, OXYGEN AND SALINITY TOLERANCES

- *N. melanostomus* tolerate a wide range of habitat conditions
- exhibit a wide salinity tolerance, inhabiting fresh, brackish and marine waters
- salinity tolerance of 40,5 (Caspian Sea)
 - salts in these habitats are from two distinct molecules (CaSO4 in the Caspian and Aral Seas and NaCl in the ocean)
- there are no known populations in a full ocean habitat
- a recent laboratory experiment found that all *N. melanostomus* died within 48 h under 30 salinity
- if ballast tanks are filled with ocean water for *c*. 5 days, may prevent future *N. melanostomus* introduction events

- N. melanostomus also has a wide thermal tolerance, ranging from -1 to 30 C
- prefer warmer water
- energetic optimum temperature is estimated to be 26 C
- It is most widespread and at its greatest densities in the warmest lake (Erie) and has the smallest range and lowest densities in the coldest (Superior)
- *N. melanostomus* are tolerant of very low dissolved oxygen levels
- may attempt to escape hypoxic conditions
- Critical lethal threshold values range from 0.4 to 1.3 mg I-1

HABITAT PREFERENCES

- spawn, feed and hide in hard substrata
- most abundant in rocky habitats
- mud and sand habitat
- abundance correlate with depth and density of aquatic vegetation

SAMPLING METHODS

- Active methods:
 - electrofishing, angling and visual assays (scuba or remotely operated video)
- Backpack and towboat electrofishing (clear, wadeable water)
- *N. melanostomus* lacks a swimbladder and does not float when electrofished
- Passive methods:
 - minnow traps, fyke nets, gillnets and trotlines
 - extremely inefficient when compared to active methods
- Multiple colours and tagging locations could produce a substantial number of unique combinations to individually identify fish

ECOLOGICAL EFFECTS

- *N. melanostomus* important component of the food webs
- high abundance and widespread distribution
- positive and negative effects on various species
- competition, predation

Species	Evidence
Stonecat Noturus flavus	Suspected from habitat and diet overlap
Percina sp.	Suspected from habitat and diet overlap
Logperch Percina caprodes	Decreased abundance, habitat and diet overlap, laboratory studies (diet, territoriality)
Juvenile yellow perch Perca flavescens	Habitat and diet overlap
European flounder Platichthys flesus	Diet overlap, decreased abundance
Eelpout Zoarces viviparous	Suspected from diet overlap
European eel Anguilla anguilla	Suspected from diet overlap
Perch Perca fluviatilis	Suspected from diet overlap
Roach Rutilus rutilus	Suspected from diet overlap
Vimba bream Vimba vimba	Suspected from diet overlap

MANAGEMENT

- N. melanostomus is too abundant and widespread in large systems such (Great Lakes and the Baltic Sea) for eradication efforts to succeed
- reduce densities locally
- prevention campaigns towards aquatic invaders
- early detection and eradication efforts in smaller systems
- In the Chicago Sanitary and Ship canal, an electric barrier was constructed to prevent the spread of *N. melanostomus* into the Mississippi River catchment

- Ballast water regulations
- Eradication or control of *N. melanostomus* populations may be possible in smaller systems if action is taken soon after detection of the species
- chemicals such as rotenone may be the only appropriate management tool and unwanted side effects (killing native fishes)