

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

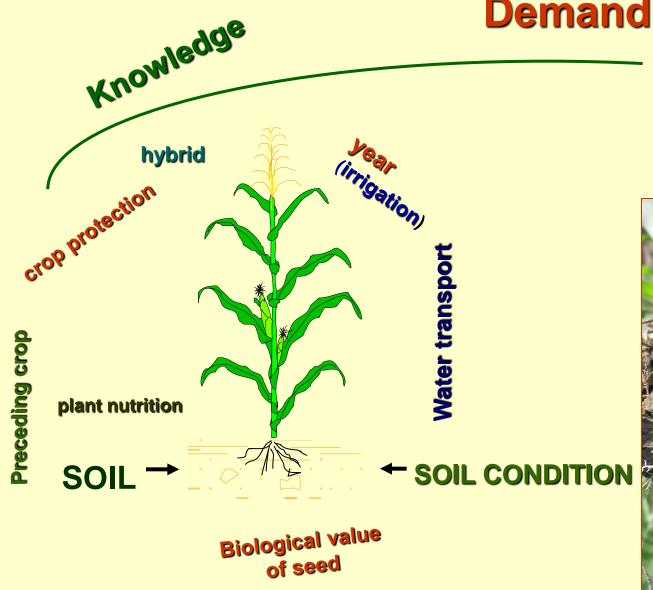
Acknowledgement

This presentation is a part of project no. CZ.1.07/2.2.00/28.0302

Inovace studijních programů AF a ZF MENDELU směřující k vytvoření mezioborové integrace CZ.1.07/2.2.00/28.0302

Tato prezentace je spolufinancovaná z Evropského sociálního fondu a státního rozpočtu České republiky

Importance of soil quality for plant growth



Prof. Márta Birkás DSc SZENT ISTVÁN UNIVERSITY GÖDÖLLŐ Faculty of Agricultural and Environmental Sciences Birkas.Marta@mkk.szie.hu

Demand of crop

Improvement of biological impacts of soil tillage in a crop production system

- 1. Structure + C + water conservation tillage
- 2. Conservation of beneficial living creatures in soils
- 3. Altering soil load and regeneration periods different growing / sowing / harvesting time
- 4. Surface cover preventing climate damages
- 5. Managing stubble residues
- 6. Producing soil loosened state maintaining and structure improving plants
- 7. Sensible plant nutrition
- 8. Skilful crop protection

Adaptable tillage =

- water conservation
- carbon conservation
- structure conservation
- habitat conservation
- cost saving (rationally)
- climate stress mitigating

Improved soil tillage <u>system</u>

STUBBLE TILLAGE / MANAGEMENT

conserving soil moisture, promoting biological mellowing and decreasing heat and rain stress

STUBBLE TREATMENT

weed, volunteer control

PRIMARY TILLAGE + SURFACE MANAGEMENT

soil condition improvement to the required depth by different tools (plough, cultivator, subsoiler, disk)

SECONDARY TILLAGE (if needed)

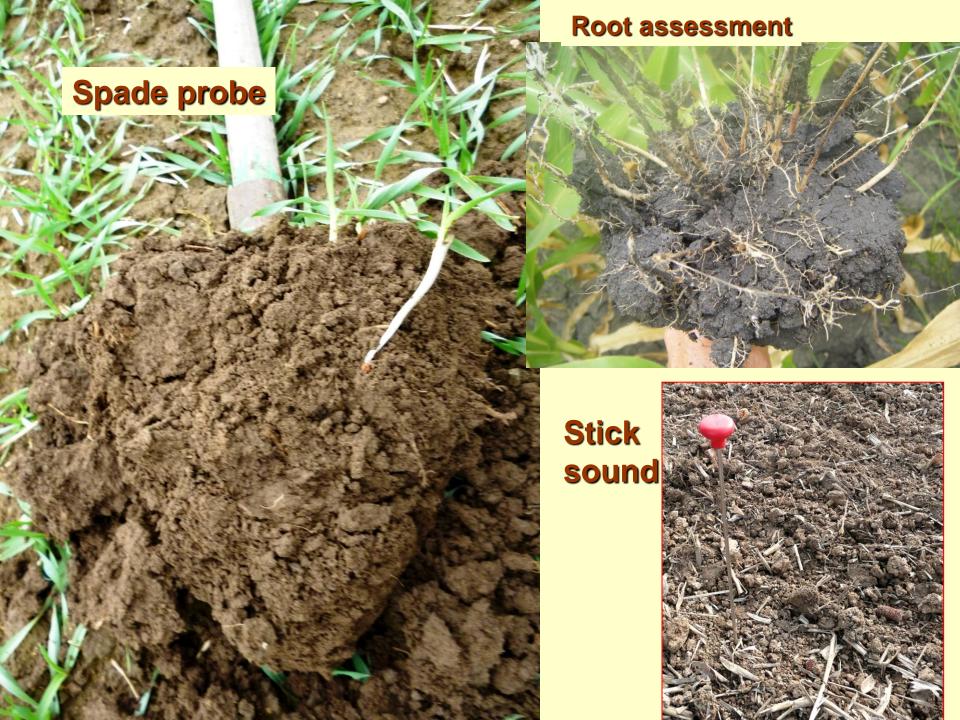
clod breaking, surface levelling and pressing

(best condition for sowing)

SOWING

surface press

SEEDBED
PREPARATION
+ PLANT +
SURFACE PRESS in
one pass


Adaptable soil tillage

Steps

- □ stalk chopping and spreading,
- □ stubble management,
- □ stubble treatment,
- □ soil condition assessment (spade probe, stick-probe),
- □ <u>adaptable</u> primary tillage and surface preparation,
- □ surface cover,
- □ minimising the surface,
- □ <u>rationalisation</u> of seedbed preparation and sowing

Beginning of the new tillage season is the day of harvest

Finger/ palm-test

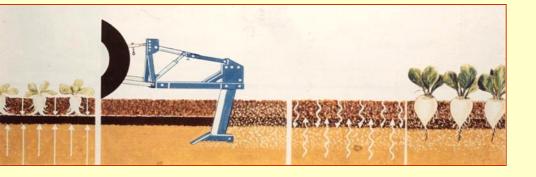
Stubble residues are important

Stubble residues are important

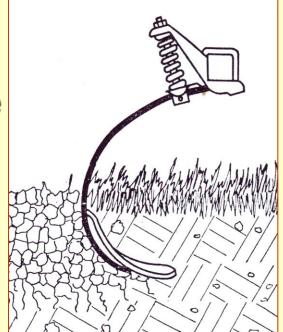
Nutrition for plants

3 t/ha wheat straw contains (ingredient, kg/ha):

N: 11-18, P: 2-3, K: 24-27


10 t/ha maize stalks contain (ingredient kg/ha):

N: 28-36, P: 8-12, K: 80-100



Inverting or mixing Stubble spraying treatment volunteer crop

Soil state improvement

Soil state maintenance

Soil conditioning primary tillage

Loosening

- 1. Soil condition test
- 2. Use in tilled/ undisturbed stubble soil
- 3. In dry no overdried – soil
- 4. Surface preparation by cultivator
- 5. No recompaction!

Advantages

- 1. Alleviation of compacted status
- 2. Favourable biological impacts
- 3. Alleviation of harmful climatic effects
- 4. Use on dry soil
- 5. Less moisture loss
- 6. Less energy
- 7. Production guarantee = economical benefits
- 8. Climate stress mitigating

Considerations

- 1. no use on wet soils
- 2. ploughless operation
- 3. cloddiness on dry soils
- 4. higher energy demand on dry soils
- 5. no control weeds, but disturb life of perennial weeds
- 6. learn it well!
- 7. possible defect at surface preparation

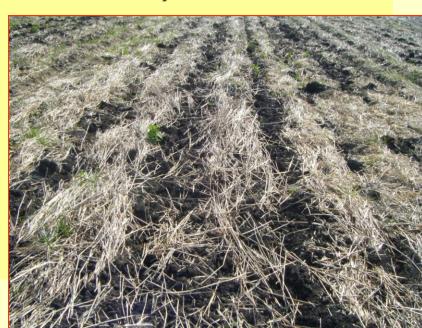
Ploughing, loosening and tine till systems in dry soils

Ploughing system	Loosening system	Tine system
Stubble tillage: conv. disk (+)	Stubble tillage: mulch cultivator (-)	Stubble tillage: mulch cultiv. or no disturbance(-)
₩	•	•
Ploughing: rev. plough + combined roll (0)	LOOSENING + comb. roll (0)	Chemical treatment (if) (-)
₩	•	•
Surface prep: conv. disk (+)	Surface prep: flat disk(-)	Primary tillage: tine (-)
₩	•	
Seedbed preparation: Compactor (-) V Sowing	Seedbed preparation and sowing	Seedbed preparation and sowing
Soil state improvement: moderate	Soil state improvement: good	Soil state improvement: very good
Legend: possible damage (+); minimised damage (-), neutral (0)		

Improvement of soil state deteriorated severe pan compaction

Gradual deepening = better (than one bad) + less cost

1st step: shallow stubble tillage + surface press and cover.


2nd step: loosen to the pan (2 – 3 weeks for regeneration)

- = deepening of the biological active layer
- 2 3 weeks prior to 3rd step

3rd step: ripping the pan layer (to ~ 40-45 cm)

- Level / press the surface
- Alternate the direction of soil ripping in the years!

More efficiency, less energy in soils having good OM balance

Soil conditioning primary tillage

1. Soil conservation = benefit/profit

2. In dry, humid and wet (workable) soil!

- 4. No pan-compaction (!)
- 5. Crumbling, loosening, mixing, surface forming.
- 6. Adaptability to soil state
- 7. Stubble- and primary tillage, surface preparation after subsoiling

3. Mulching = water conservation