□ Soil state resulting in C loss is the same state inducing water loss!

The quantity of C loss affecting tillage equals or may exceed the amount of C composed into the soil in the same period.

Continuous application of <u>humus-conserving tillage</u> may result in a balance near to the original level

Organic matter / Carbon management

better water storage better soil bearing capacity better soil workability Iower fuel demand Iess sensitivity to compaction Ionger duration of looseness stabile soil structure favourable biological processes Iess climate stress / yield loss

Non-tilled soil: humification = decomposition C wasting tillage: humification < decomposition C-conserving tillage (>5-6 years):

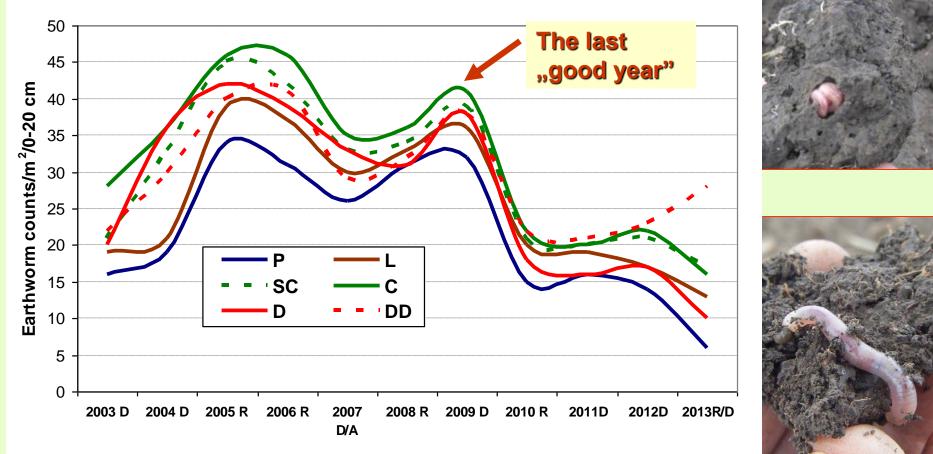
humification = decomposition

- Preserving OM and C plays an important role in the soil's resistance to settling and compacting as well.

- From the aspect of their impacts on C balance tillage interventions qualify as preserving, balance keeping or C waste increasing

mellowing

Harmony or disharmony between soil physical, biological and chemical condition


Earthworm activity

Degree: <10 / 11-15 / 16-20 / **> 21 count**/m²/ 0-20/ 0-25 cm layer, or <10 / 11-20 / 21-30 / **> 31 burrows** /m²/0-20/ 0-25 cm layer

Soil state, as habitat for earthworms in different seasons (Hatvan, 2002 – 2013)

Legend: D: dry year, R: rainy year, A: average period P: ploughing + levelling, L: loosening, SC,C: cultivator use, D: disking, DD: direct drilling

Earthworms burrows and casts in the soil indicate good habitat that is good, preserved condition

Tillage induced factors impacts on... (summary)

Factor	soil	plant
Looseness	Free from compaction = regeneration = less climate sensitivity	Deep rooting = less climate sensitivity
Depth of loosened layer	Depth of water storing! No compacted layer = good water infiltration and storing	Depth of water intake! 35-45 cm good, 28-34 cm adequate, 18-20 cm dubious (weather!)
Aggregation	Less sensitivity to settlement, good trafficability = less climate sensitivity	Deep rooting = less climate sensitivity
Optimal water balance	Intake > loss = less climate sensitivity	Good chance of water utilisation
Surface conservation	Soil preservation = less climate sensitivity	Less plant sensitivity
Optimal C balance	Incorporation > loss = less climate sensitivity	Better water state = less climate sensitivity

Repin, 1887: Tolstoy (Russia)