duration of looseness

Influencing factors: a) tillage process, b) tillage quality (resulted loosened or non-loosened state), c) soil quality (e.g. sensitivity to settling), d) climate, d) modes of tillage followed loosening process

So: some months / 1 or more seasons

depth of the loosened layer

..it may either help or hinder the development of the roots of plants of a particular species

Rooting depths (cm) of crops in experimental conditions (Hatvan, 2002-2013) Legend: A: average season, D: dry season, R: rainy season

Soil in a loosened state and deteriorated by disk pan

0

→ loosen

ploughpan

0

-5

-10

с -15 -20 -25

-30

Soil in a loosened state and deteriorated by plough pan

Penetration resistance MPa

5

3

2

Subsoil compaction observed on 17,280 ha of land during six examination periods in Hungary (1976-2010)

Location of subsoil	Examination periods							
compaction	1. 1976-1987	2. 1988-	3. 1991-	4. 1998-	5. 2002-	6. 2008-		
	1990 1997 2001 2007 2010 Percentage of observed area							
below 60 cm	14 4 1 0 11 9							
below 40 cm	22	12	6	2	21	26		
at the depth of 28-32 cm	44	47	42	36	30	34		
at the depth of 22-26 cm	14	22	23	14	21	16		
at the depth of 18-22 cm	6	10	16	22	12	10		
2 c. layer below 16 cm	0	3	7	14	5	5		
3 c. layer below 16 cm	0	2	5	12	0	0		
Examined area (ha)	2420	2860	2580	1860	4690	2870		

Occurrence and extension of the compacted layer

	La- yer cm	Below 40-45 cm	To a depth of 30-35 cm	To a depth of 20-25 cm	To a depth of 15-20 cm	From the toplayer (e.g. 0-45 cm)
	5					
	10					
	15					
Location of	20					
the	25					
	30					
layer	35					
	40					
	45					
	50					
Stressor		Nature	Ploughing		Disking	Traffic
Climate stress		poor	poor-moderate	moderate	strong	very strong

0-10 mm compact layer: slight

Ranking of extension:

10-30 mm: medium 30-50 mm: heavy

50-100 mm: severe damage

agronomical structure (aggregation)

proportion of dust (<0.25 mm), small crumbs (0.25-2.5mm), crumbs (2.5-10 mm), and clods (>10 mm \emptyset)

- A soil with a 70-80 % *crumb* fraction has a good structure, while a soil
 with a higher than 50 % *dust*s has a poor structure.
- The trend of crumb forming is affected by tillage, the crop sequence and the degree of surface protection
- Growing crumb fraction is a result of carbon and moisture conserving tillage and of effective surface protection
- Originally well-structured soils have been pulverised by excessive tillage

Soil crumbling improvement and maintenance (Hatvan, 2002 – 2013)

Hatvan, 2002 – 2013; P: ploughing + levelling, L: loosening, SC,C: cultivator use, D: disking, DD: direct drilling

surface form

<u>100 %</u> (flat), 200-300 % (rough, cloddy)

- it should be minimised to reduce loss of water in any season and particularly important in the summer months
- water is lost through the large surface of a dry cloddy soil
- surface area may be enlarged in a wet season

Tillage treatment	Surface forming	Soil moisture loss	Climate-induced damage after sowing in late summer
Deep ploughing	yes	medium	medium
	no	great	heavy
Deep loosening	yes	medium	medium
	no	great	heavy
Mulch in surface	yes	little	little

Relationships between summer tillage and the likely climate risks

A large surface is acceptable in wet soil condition, but...

-

surface cover

Soil surface is exposed to weather and farming impacts: Soil structure damages, it turns into silt by rain, it dries and later on crust forms; it dries and perhaps even blows away by wind

Protection may good or inadequate during the growing season, depending on the crop cover; Dense crops and grasses give better protection.

- Soil needs particular protection during the critical periods, especially in the summer after harvest and in the spring after sowing.
- In summer the chopped crop residues should be spread on the soil surface for protection.

The advantages of surface cover out of growing season: □ reduced soil moisture loss,

- protection of the top-layer against climate-induced damage,
- maintaining / encouraging favourable biological activity,
- □ improving soil workability.

Surface protection by cover during critical periods		green green	eat risk	
Cases		Cover rat	te (%) and pro	otection
		GOOD	MEDIUM	POOR
Following harvest		55 - 65	35 – 45	< 10
Stubble tillage (sumn	ner)	45 – 55	(35 – 45*)	< 10
Primary tillage (sumn	ner)	25 – 35	15 – 25	0 – 5
Primary tillage (winte	er)	15 – 25	10 – 15	0
Between wide rows (h	ot spring days)	15 – 25	10 – 15	0
Risk		low	moderate	great

* accepted by practice

non-recommended

15%

Water transport

Balance between intake, storage and loss The proportion of precipitation actually ends up in the soil: **70-80 % in favourable cases**, but **often it is around 65-70 %.**

Tillage improves soil water intake capacity but it may increase its water loss

Water intake and storage depend on the depth of the loosened layer and the permeability of the soil below disturbed layer

water-loss increasing surface

water conserving surface

Soil moisture trend at different stubble treatment during 85 days (Hatvan, July-Oct. 2013)

Outside the growing season the extent of water loss is affected by the shape of the tilled surface, surface cover and the depth of disturbance.

Water conservation or loss

Independent of farming

Precipitation (input) Soil water management (±)

Depends on farming

- Long-term land use
 - water loss or water conserving
- water utilization of plants
 soil tillage

(water loss or water conserving)

- soil condition
 - capability of intake and storage;
 - capability to transport from deeper layers to the root zone

Water content for workability in a Chernozem soil at Hatvan

5 0 10 15 20 25 30 35 40 0 -5 -10 -15 -20 -25 Depth (cm) -30 **'Lower limit** -35 **Upper** limit -40 Loosening -45 Ploughing -50 -55 Tine tillage: between upper -60 and lower layer

-65

Soil moisture (m/m%)

Water content levels (m⁻³m⁻³) related to soil tillage (forest/loamy soil)

< 13	14 - 17	18 – 21	21 -	- 24	24 - 28	> 29
Wilting point: 9.42 – 10.34		Optii (21 -	mum - 22)			
Dry	Moderately dry	Humid		Wet	Over-wet	
Solid state		Semi-solid state			Plastic state	
Clod/dust, forming	Clod/crumb forming moderately	Crumb forming		Structure deterioration	Smearing, puddling	
Soil disturbance non- recommended	Good for subsoiling, disking	Good for ploughing and levelling, tine, surface preparing, sowing		Trafficable, but soil may be damaged Tine tillage? Direct drilling?	Non-trafficable, non-workable (non ploughable)	
More energy, more damage		Least ene dam	rgy, lea age	ast		Most energy, most damage

Water that cannot seep into the soil will never be utilised by crops!

farming-induced water-logging

Precipitation mm > water seeping into the soil Bad soil state = less stored water + greater loss We have to identify the real cause of the water-logging (natural or human / farming induced)

The possible C-loss of soil leaving relatively large surface under 90 days, in a moderately dry season

Legend: PL: ploughing, L: loosening, D: disking, C: tine tillage, SBP: seedbed preparation, SW: sowing, DD: direct drilling

Carbon balance in case of maize following w. wheat

C input t/ha		Bad tillage	C output t/ha/season	Good tillage	C output t/ha/season
Straw	5.0	Stubble tillage (inadequate)	0.59 – 0.64	Stubble tillage (appropriate)	0.33 – 0.41
C content of straw	2.0	Weedy stubble	0.02 – 0.06	Chemical weed control	0.02 – 0.06
Roots	2.5	Ploughing 22-25 cm, non prepared	2.58 – 2.63	Ploughing 22-25 cm + preparation	0.86-1.07
C content of roots	1.0	Preparation by disk + roll	0.32 – 0.39	Cross-board levelling + roll	0.007 – 0.009
		Seedbed preparation 1x/2x + sowing	0,054 – 0,092	Seedbed preparation, sowing, in a day!	0.036 – 0.039
		Other traffic	0.152 – 0.323	Other traffic	0.152 – 0.323
Total C input	3.0	C loss	3.716 – 4.135	C loss	1.405 – 1.911
Balance			- 0.72 / - 1.14		+1.60 / +1.09
Risk			Moderate C reduction		C and humus increase
Roots + stubble stub	1.55				
C content of stub	0.62				
Balance			- 3.10 / - 3.52		- 0.79 / - 1.29
Risk			Great C reduction		Moderate C reduction