Influence of sowing date (autumn vs. spring) on crop development, yield and yield structure of wheat and triticale

Rea Maria Hall University of Natural Resources and Life Science, Vienna

Content

Scientific Background Facultative Forms Plant requirements Material and Methods Results Discussion

Scientific Background

- The sowing date is on of the most important management factors especially under Pannonian climate conditions
- In wheat, an increase of 1 °C during the grain filling period can result in a 570-620 kg/ha−1 yield reduction
- Drought or heat stress during the grain filling period negatively influence the movement of photosynthetic products to develop kernels and inhibit starch synthesis
- The sowing date influences the N accumulation in wheat during the grain filling period. Widdowson detected large differences in N accumulation in wheat due to different environmental conditions during the grain filling period

FACULTATIVE FORMS

Facultative Forms

- Hardly any studies on the suitability of facultative forms in Austria
- Facultative forms are suitable for cultivation in areas that do not have heavy frost and do not require cultivars with high levels of hardiness
- Adequate alternative to common cultivars?
- Flexibility for farmers

Plant requirements - Wheat

- Cultivar XENOS
- Sowing depth: 2-4 cm
- Time from sowing to grain filling:
 - autumn sowing: approx. 230 days
 - spring sowing: approx. 90 days
- Optimum temperature for germination: 12-25 °C (min. 2-4 °C)
- Optimum sowing date in Austria
 - autumn sowing: beginning of October to beginning of November
 - spring sowing: as soon as possible (beginning of March)

Plant requirements - Triticale

- cultivar AGRANO
- Sowing depth: 2-4 cm
- Time from sowing to grain filling:
 - autumn sowing: approx. 220 days
 - spring sowing: approx. 90 days
- Optimum temperature for germination: 15-30 °C (min. 2-3°C)
- Under stress conditions triticale is very competitive compared to other cereals species

MATERIAL & METHODS

Site

- Experimental farm Groß Enzersdorf in the Marchfeld basin
- Semi-arid Pannonian climate
 - cold winters
 - fluctuating heavy frost periods
 - irregular snow crusts
 - hot summers with intermittently drought
- Mean annual temperature: 10.6 °C
- Mean precipitation: 538 mm
- Above-average long vegetation period (middle of March to middle of November)

Soil types

- Chernozem with varying levels of loam and loess
- High lime contents
- At Experimental station: chernozem of alluvial origin
 - silty-loam which is rich in calcareous sediments
 - pH 7.6
 - organic substance: 2.2 2.3%

Experimental Design

 Split-plot design sowing date was assigned to the main plot cultivar was assigend to the sub plot

4 replications

Sub plot: 10 x 1.5 m

Autumn sowing: October 18th, 2011

Spring sowing: March 13th, 2012

▶ 300 germinable seed per m⁻²

▶ 12.5 cm rowing space

Sowing depth 3-4 cm

Crop management

- Field preparation
 - field cultivator (15 cm working depth)
 - short disc harrow (10 cm working depth)

▶ N-fertilization: 100 kg ha⁻¹ Nitramoncal (27 % N) in two equal splits

(March 15th, May 5th)

Manual weed control

Measurements

- Phenological development stages
- Development of crop stand height and above-ground biomass

AFTER HARVEST

- Stand height
- Dry matter production
- ▶ Ears m⁻²
- ▶ Kernels m⁻², kernel per ear
- TKW
- Hectolitre weight

RESULTS

Temperature (°C)

October 18th, 2011 to July 11th 2012

Source: BOKU, 2012

Precipitation (mm)

October 18th, 2011 to July 11th 2012

Source: BOKU, 2012

Phenological development

- On average the spring-sown corps lagged 10 days behind the autumn-sown crops during the whole trial period
- During the whole vegetation period the spring-sown crops were not able to make up this developmental edge

Stand height

- WHEAT
 Autumn-sown: maximum stand height of 78 cm (May 30th)
 Spring-sown: maximum stand height of 63 cm (June 11th)
- TRITICALE
 Autumn-sown: maximum stand height of 100 cm (May 30th)
 Spring-sown: maximum stand height of 89 cm (June 11th)

Above-ground dry matter

 Autumn-sown wheat and triticale produced much higher aboveground dry matter than spring-sown variants (wheat: 997 vs. 662 g m-2; triticale: 972 vs. 748 g m-2)

Crop growth rate

WHEAT

Autumn: substantial peak between BBCH macro stage 3 and 5 followed by a sharp decline

Spring: fluctuating line with slight peaks at BBCH macro stage 3 and 6

TRITICALE

Autumn-sowing: high increase between BBCH macro stage 2 and BBCH macro stage 5

Spring-sowing: strong increase of growth until BBCH macro stage 5

Relative crop growth rate

The relative crop growth rate of the spring-sown crops was substantially higher than those of the autumn-sown wheat and triticale

Yield parameters

parameter	unit	wheat		triticale	
		autumn	spring	autumn	spring
grain	g m ⁻²	356ª	204 ^b	327ª	220 ^b
harvest index	%	0,43 ^a	0,37 ^b	0,40a	0,35 ^b
ear density	m ⁻²	380 ^a	313 ^b	295 ^a	320 ^b
hectolitre weight	kg	81	76,64 ^b	75,8ª	68,98 ^b
grains	ear ⁻¹	24 ^a	19 ^b	28 ^a	20 ^b
grains	m ⁻²	8.950 ^a	5877 ^b	8.235 ^a	6534 ^b
TKW	g	43,00 ^a	35,74 ^b	41,13 ^a	35,05 ^b

The yield parameters of the autumn-sown wheat and triticale are both, significantly higher than the yield parameters of the springsown wheat and triticale

Conclusion

- Autumn-sowing resulted in a faster development and faster ripening than spring sowing
- Spring-sown crops lagged approx. 10 days behind the autumn sown crops during the whole trial period
- Spring-sown crops showed substantial lower stand heights and above-ground dry matter leading to significantly lower yields and yield parameters

Reasons

- Crops with longer development cycles could be able to produce higher dry matter and higher yield
 - >> more time to utilize available growth resources (light, nutrients, moisture etc.) which are used to produce and partition more assimilates to the sinks
- Spike weight at anthesis is well correlated with kernel number, which is a prime determinant of grain yield
 - >> the longer the spike growth duration, the higher is the supply of photoassimilates to the spike Especially under dry conditions the yield of triticale greatly depends on translocation of per-anthesis assimilates to the grain

Reasons

- High temperature after anthesis can dramatically reduce grain yield
 - >> as temperatures rises, photosynthesis reaches a maximum at about 20 °C while respiration continues to increase. This reduces the available assimilates for growth
- Significant differences of environmental condition during grain filling
 - >> by changing the duration of the pre-anthesis period and the environmental conditions during the grain filling period, the sowing date significantly modifies the contribution of the post-anthesis dry matter to grain dry matter

DISCUSSION