

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

Swiss agricultural policy

SALCA life-cycle assessment Agri-environmental indicators

Peter Weisskopf and Thomas Nemecek

with Gérard Gaillard, Ruth Freiermuth Knuchel, Martina Alig, Daniel Baumgartner, Philippe Jeanneret, Hans-Rudolf Oberholzer

Mendel University, Brno May 9, 2013

Outline

Swiss agricultural policy

- Swiss agriculture: facts and figures
- Swiss agricultural policy today
- Agriculture policy 2014-2017

SALCA life cycle assessment (Swiss Agricultural Life-Cycle Assessment)

- The concept of life cycle analysis with SALCA
- SALCA emission models and impact assessment methods
- Examples of applications

Agri-Environmental Indicators (Agri-Environmental Monitoring)

- Basic concepts
- SALCA tools
- Examples of results

Outline

Swiss agricultural policy

- Swiss agriculture: facts and figures
- Swiss agricultural policy today
- Agriculture policy 2014-2017

SALCA life cycle assessment (Swiss Agricultural Life-Cycle Assessment)

- The concept of life cycle analysis with SALCA
- SALCA emission models and impact assessment methods
- Examples of applications

Agri-Environmental Indicators (Agri-Environmental Monitoring)

- Basic concepts
- SALCA tools
- Examples of results

Swiss agricultural policy - Facts and figures - Agricultural policy today - Agricultural policy 2014-17

Coordination of agricultural and environmental policies: soil

SALCA: An integrated concept for agricultural life cycle assessment

SALCA = Swiss Agricultural Life Cycle Assessment

SALCA consists of the following elements:

- Database for life cycle inventories for agriculture (in collaboration with ecoinvent)
- Models for the calculation of direct emissions from field and farm
- A selection of impact assessment methods (midpoints)
- Methods for the assessment of impacts on biodiversity and soil quality
- Calculation tools for agricultural systems (farm, crop)
- Interpretation scheme for agricultural LCA

Defining system boundaries: crop production analysis

Defining system boundaries: whole farm analysis

System boundary = farm gate

Defining system boundaries: where to draw the line between animal and plant production?

Defining system boundaries: single crop or cropping system?

SALCA life-cycle assessment | Mendel University 13-5-09 Peter Weisskopf | © Agroscope Research Station

Defining system boundaries: temporal system boundaries

Annual crops:

- Starting after harvest of previous crop (including fallow period or catch crop, if no product)
- Ending with harvest of the considered crop

Permanent crops:

- Annual basis (1st January to 31st December) or
- Multiannual cropping cycle (distinguishing different phases: planting, young plantation, main yielding phase, eradication)

Outline

Swiss agricultural policy

- Swiss agriculture: facts and figures
- Swiss agricultural policy today
- Agriculture policy 2014-2017

SALCA life cycle assessment (Swiss Agricultural Life-Cycle Assessment)

- The concept of life cycle analysis with SALCA
- SALCA emission models and impact assessment methods
- Examples of applications

Agri-Environmental Indicators (Agri-Environmental Monitoring)

- Basic concepts
- SALCA tools
- Examples of results

Estimating direct field and farm emissions

Ideal emission models should

- ... reflect the underlying environmental mechanisms
- ... be site and time dependent
- ... consider the effect of soil and climate
- ... consider the effect of management
- ... be applicable under a wide range of different situations
- ... should have a similar level of detail for the different models
- ... and: should easily be usable:
 - \rightarrow Parameters are measurable
 - \rightarrow Data can be collected in a reasonable time
 - \rightarrow Calculation is feasible

A compromise is needed!

SALCA emission models

Emission	Description	Reference
Ammonia (NH ₃)	Considers type of fertiliser, climate, time and technique of application	Menzi <i>et al</i> . (1997)
Nitrous oxide (N ₂ O)	Direct and indirect emissions	IPCC (2006)
Nitrate (NO ₃ -)	Monthly balance, considering crop, sowing and harvest dates, soil tillage, timing and quantity of N fertilisation	Richner <i>et al.</i> (2006)
Phosphorus (P, PO ₄ ³⁻)	Includes erosion, run-off and leaching, considers P fertilisation, soil characteristics, topography	Prasuhn (2006)
Heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn)	Field or farm level balance, considers inputs, harvest, leaching, erosion and change in soil concentration	Freiermuth (2006)
Methane (CH ₄)	Enteric fermentation and manure management	IPCC (2006)

SALCA emission models: ammonia (NH₃)

Four emissions paths are modelled:

1. Application of farm manure = $f(fertiliser amount, NH_3 and NH_4$ concentration, covered area, saturation deficit in the air in function ofaverage monthly temperature)

 Application of mineral fertiliser = emission factors according to fertiliser type (2-15%, Asman 1992)

3. Emission from pasture = 5% of total N in excrements emitted as NH_3

4. Emission from stable = emission factors dependent on animal category, housing system, farm manure type (liquid or solid)

Agro

SALCA emission models nitrous oxide (N₂O)

N₂O in air:

adapted method according to IPCC 2006, under consideration of induced N_2O -Emissions:

- Fertilisers: Direct emissions: 1% of available N
- Symbiotic N-fixation in legumes: no emissions
- Crop residues: emission factor 1%
- Storage of farmyard manure: emission factors 0.1% for liquid manure and 2% for dung
- Pasture: emission factor 2%
- Induced Emissions: 1% of NH₃-N and 0.75% of NO₃-N

SALCA emission models: SALCA-nitrate

Source: Richner et al. (2006)

SALCA emission models: phosphorus (P)

Four kinds of P-emissions in water:

- Surface run-off in rivers (solved PO₄³⁻)
- Drainage losses in rivers (solved PO₄³⁻)
- Erosion in rivers (P bound to soil particles)
- **Leaching** in ground water (solved PO₄³⁻)

Emissions are dependent of:

- Soil characteristics (granulation, bulk density, soil water balance) and drainage
- Quantity of P-fertiliser
- Type of P-fertiliser (manure, compost, mineral)
- Field slope and distance to rivers
- Quantity of eroded soil
- Plant available P in upper soil

18

SALCA emission models: heavy metals

 Input-Output-Balance per field (caused by farming) for: Cd, Cu, Zn, Pb, Ni, Cr, Hg

• Inputs:

- \rightarrow Fertilisers (mineral and organic)
- \rightarrow Seed
- → Pesticides
- → Feedstuff and auxiliary materials for animal breeding

• Outputs:

- \rightarrow Exported primary products (e.g. grains, meat)
- → Exported co-products (e.g. straw, animal manure)
- \rightarrow Leaching to groundwater and drainage to surface water
- \rightarrow Erosion to surface water
- Allocation for inputs caused by the farming
- The final balance can be negative!

SALCA impact assessment methods

Impact category	Reference	Remarks
Non-renewable energy demand	Ecoinvent (2007)	Fossil und nuclear energy resources
Global warming potential	IPCC (2007)	
Ozone formation potential	EDIP (2003)	With regionalisation
Eutrophication potential	EDIP (2003)	With regionalisation
Acidification potential	EDIP (2003)	With regionalisation
Aquatic and terrestrial ecotoxicity Human toxicity	CML (2001)	Complemented with characterisation factor for ca. 400 pesticide active ingredients
Biodiversity	Jeanneret et al. (2006)	11 indicator organism groups2 characteristics
Soil quality	Oberholzer et al. (2006)	9 indicators for physical, chemical and biological soil properties

SALCA life-cycle assessment | Mendel University 13-5-09 Peter Weisskopf | © Agroscope Research Station

SALCA methodology: method for biodiversity - framework

11 Indicator species groups

→ ecological and LCA criteria: flora, birds, mammals, amphibians, molluscs, spiders, carabids, butterflies, wild bees, and grasshoppers

Two characteristics

- → overall species diversity of the indicator species groups
- \rightarrow diversity of ecologically demanding species
- Extensive inventory data about agricultural practices
 - → occupation, emissions, farming intensity indicators (e.g. number of cuts) and process figures (e.g. herbicide type)
 → typical cultivated fields and semi-natural habitats
- Characterisation based on scoring system
 1) estimate every indicator species group's reaction to farming
 2) aggregation step resulting in scores
- Aggregation and normalisation of scores
 → biodiversity value and biodiversity potential

SALCA methodology: method for biodiversity - principle

SALCA life-cycle assessment | Mendel University 13-5-09 Peter Weisskopf | © Agroscope Research Station

SALCA methodology: example for biodiversity – case study

	Biodiversity scores							
	Grassland			Winter Wheat				
Production system	(A)	(B)	(C)	(D)	(A)	(B)	(C)	(D)
Overall species diversity	6.2	6.4	13.8	21.3	7.7	7.5	8.4	8.7
Grassland flora	3.7	3.9	11.4	18.5				
Crop flora					15.2	15.1	16.0	17.3
Birds	6.4	6.7	13.8	22.0	5.3	5.0	6.2	6.4
Mammals	7.3	7.3	11.1	11.1	4.6	4.6	4.6	4.6
Amphibians	2.1	2.1	5.2	9.5	1.7	1.7	1.8	1.8
Molluscs	5.4	5.6	5.8	11.3	2.2	2.2	2.2	2.2
Spiders	9.1	9.3	15.8	22.4	8.2	8.0	10.5	10.7
Carabid Beetles	7.0	7.4	13.6	21.0	10.9	10.6	11.7	11.9
Butterflies	6.8	7.0	20.0	36.0				
Wild Bees	7.4	7.6	18.6	23.0	5.2	4.9	5.0	4.8
Grasshoppers	6.9	6.9	19.4	33.1				

Species with high ecological requirements

Amphibians	0.8	0.8	2.9	4.8	1.5	1.4	1.6	1.6
Spiders	8.9	9.0	15.3	21.6	8.0	7.8	10.3	10.5
Carabid Beetles	7.0	7.3	13.4	20.6	10.6	10.1	11.2	11.3
Butterflies	6.7	6.8	19.4	36.0				
Grasshoppers	6.8	6.8	19.3	32.9				

Results of SALCA-biodiversity.

Biodiversity scores are given per ha cultivated crop. A, B, C, D are management systems with main characteristics :

Grassland systems (hay production):

- (A) 5 cuts/year, fertilised with slurry; 11t DM/ha
- (B) 4 cuts/year, fertilised with slurry; 9t DM/ha
- (C) 3 cuts/year, fertilised with solid manure; 5.6t DM/ha
- (D) 1 cut/year, no fertilisation; 2.7t DM/ha

Winter wheat systems:

- (A) Conventional production; 5.8t DM/ha
- (B) Integrated production intensive; 5.5t DM/ha
- (C) Integrated production extensive; 4.5t DM/ha
- (D) Organic production; 3.5t DM/ha

Scores of grassland (A) and winter wheat (B) systems are set as **reference scores**. Color codes are given for rough comparison:

□ similar to the reference (95%<score<104%)

better than the reference (105%<score<114%)

much better than the reference (score >115%)

no relevance for the considered system

SALCA methodology: method for soil quality - framework

- Spatial system boundary = farm
- **Temporal system boundary = crop rotation period** (6-8 years)
- Management data of all plots of a farm in a single year are considered as representative for a whole crop rotation
- Only influences of agricultural management practices are included, no immissions
- The development trend of soil properties is assessed, not absolute values

Soil properties
Physical
Chemical
Biological

Criteria

According to ISO 14040 and ISO 14042

Depending on the needs of Life Cycle Assessment

S	Physical	Rooting depth of soil
intie		Macropore volume
ope		Aggregate stability
icat il pr	Chemical	Soil organic matter
so so		Inorganic pollutants
e ct able		Organic pollutants
Dire sura	Biological	Earthworm biomass
9 Леа		Microbial biomass
C		Microbial activity

SALCA methodology: method for soil quality – impact assessment

Example: slurry application

Source: Oberholzer et al. (2006)

SALCA methodology: example for soil quality – results DOK

Results of SALCA-Soil Quality for the five DOC treatments

Direct Indicators for soil quality		D0	D2	02	K2	Μ
sal	Rooting depth of soil	0	0	0	0	0
iysia	Macropore volume	0	0	+	+	0
Р	Aggregate stability	-	+	+	+	-
TopCorg contentUpdateHeavy metal contentOrganic pollutants			+	+	+	
		0	0	0	0	0
		0	0	0	0	0
cal	Eathworm biomass	0	0	0	+	0
logi	Microbial biomass	-	0	+	+	-
Bic	Microbial activity	-	0	+	+	-

- Minor differences between the three farming systems
 - → most management practices are similar or equal regarding soil quality
 - → some indicators do not show a positive effect in D2 because of slightly less organic input compared to O2 and K2.
- D0 and M: impacts on soil quality by insufficient carbon supply
 → no organic fertilizers, removal of crop residues
- O2 and K2: positive effect of crop rotation on macropore volume
 → not negated by a high compaction risk

Outline

Swiss agricultural policy

- Swiss agriculture: facts and figures
- Swiss agricultural policy today
- Agriculture policy 2014-2017

SALCA life cycle assessment (Swiss Agricultural Life-Cycle Assessment)

- The concept of life cycle analysis with SALCA
- SALCA emission models and impact assessment methods
- Examples of applications

Agri-Environmental Indicators (Agri-Environmental Monitoring)

- Basic concepts
- SALCA tools
- Examples of results

Agroscope

Cropping systems research

Example organic vs. integrated farming: energy demand in the DOC trial

Source: FAL report 58 (2006)

Communication of results to farmers: overview of environmental impacts

Outline

Swiss agricultural policy

- Swiss agriculture: facts and figures
- Swiss agricultural policy today
- Agriculture policy 2014-2017

SALCA life cycle assessment (Swiss Agricultural Life-Cycle Assessment)

- The concept of life cycle analysis with SALCA
- SALCA emission models and impact assessment methods
- Examples of applications

Agri-Environmental Indicators (Agri-Environmental Monitoring)

- Basic concepts
- SALCA tools
- Examples of results

Agri-environmental indicators: aims

- Based on Ordinance on sustainability in agriculture
- Aim: assessment of the effects of agricultural policy and agricultural practices on environmental quality
 - → information on national, regional and sectorial level
 - information for decision makers, for the general public, for comparisons (with other countries)

Agri-environmental indicator set

scope	driving forces: agricultural practices	environmental effects: agricultural processes	environmental state
nitrogen	 N-balance of agriculture 	 potential N emissions (NO₃, NH₃, N₂O) 	 nitrate pollution of groundwater
phosphorous	 P-balance of agriculture 	 P content of soils 	 P pollution of lakes
energy / climate	 energy consumption in agriculture 	 energy efficiency emission of greenhouse gases 	
water	 use of pesticides use of veterinary medicinal products 	 risk of aquatic ecotoxicity 	 pesticide pollution of groundwater
soil	• soil cover	 erosion risk humus balance heavy metal balance 	 heavy metal content of soils
biodiversity / landscape	 ecological compensation areas 	 potential effects of agriculture on biodiversity 	 diversity of wild species habitat diversity

Agri-environmental indicators: organisation

• Start in 2009; currently in implementation

→ ART responsible for driving forces and environmental effects
 → Federal Office for the Environment responsible for state indicators

- Organisation as "Central assessment of environmental indicators (ZA-AUI)", analogous to "central assessment of farm accounting data (ZA-BH)"
- Data acquisiton in the same network (currently env. 450 farms) and with the same partners as for accounting data:
 - → data collection: reference data for proof of ecological performance, PEP by farmers, state indicators by FOE
 - → data retrieval by agricultural trustees
 - → data storage and management by advisory service (AgroTech system)

→ indicator calculation and interpretation by ART

Agri-environmental indicators: production chain

Workflow in the project LCA-FADN

(Farm Accountancy Data Network)

Outline

Swiss agricultural policy

- Swiss agriculture: facts and figures
- Swiss agricultural policy today
- Agriculture policy 2014-2017

SALCA life cycle assessment (Swiss Agricultural Life-Cycle Assessment)

- The concept of life cycle analysis with SALCA
- SALCA emission models and impact assessment methods
- Examples of applications

Agri-Environmental Indicators (Agri-Environmental Monitoring)

- Basic concepts
- SALCA tools
- Examples of results

Examples for AEIs: nitrogen

Examples for AEIs: nitrogen

Examples for AEIs: phosphorous

Examples for AEIs: phosphorous

Examples for AEIs: nitrogen / phosphorous

Examples for AEIs: nitrogen / phosphorous

Examples for AEIs: energy / climate

Examples for AEIs: energy / climate

Agroscope

Examples for AEIs: energy / climate

Examples for AEIs: water

Examples for AEIs: water

Examples for AEIs: soil

Examples for AEIs: soil

Examples for AEIs: soil

Examples for AEIs: biodiversity / landscape

Agroscope

Examples for AEIs: biodiversity / landscape

Agroscope

Thank you for your attention!

ART – research for agriculture and nature

peter.weisskopf@agroscope.admin.ch