

"MALDI-TOF/TOF Technology - Excellent Mass Spectrometry Giving Best Combination of Resolution, Mass Accuracy and Data Acquisition Speed for MALDI Imaging"

Mgr. Michal Boháč, Ph.D., Bruker s.r.o. presenting work of Bruker Daltonics team

Overview of the talk

- Who is Bruker and who is **Bruker Daltonics?**
- Types of MS detectors for coupling with HPLC, UHPLC and nanoHPLC: ESI (and IonBooster), APCI/APPI, nanoESI or even MALDI?
- Applications in metabolomics and food control:
 - HPLC-ESI-QTOF (UHR-TOF) (maXis, impact)
 - ID of unknowns, impurities
 - Multitarget screening and quantitation using hrEIC
- Applications in proteomics:
 - PRIME combination of nanoLC-ESI (amaZon/impact) and nanoLC-MALDI (ultraflextreme MALDI-TOF/TOF) for Bottom up complex ID of proteins
 - Top Down proteomics
 - MALDI Imaging

Bruker Corporation Overview

	Ta alama la sua Dia Manusa	Madau Angeliashiana
	lechnology Platforms	Major Applications
Bruker AXS •	 X-ray Analysis X-ray Diffraction X-ray Crystallography X-ray Fluorescence EDS Microanalysis Spark OES 	 Materials Identification Materials Research Structural Proteomics Nanotechnology
Bruker Daltonics —	 Mass Spectrometry MALDI-TOF(/TOF) Ion Trap MSⁿ ESI-(Qq)-TOF, FTMS IMS 	 Small Molecules Analysis Proteomics Clinical Research Tools Homeland Security/Defense
Bruker Optics — •	 Vibrational Spectroscopy FT-IR FT-NIR Raman 	 PAT & Quality Control Materials Identification Materials Research Pharma 'Forensics'
Bruker BioSpin — •	 NMR and EPR spectroscopy NMR / TD-NMR EPR MRI Analytical Services 	 Analytical Chemistry Pharmaceuticals Life Science Food Metabolomics

- MALDI-TOF and -TOF/TOF Mass Spectrometry
- ESI-(Q)TOF Mass Spectrometry
- ESI- UHR-TOF Mass Spectrometry
- ESI-Ion Trap Mass Spectrometry
- ESI/MALDI-Q-FTMS
- ESI-QqQ (from 2012)
- Unique Mass Spectrometry Solutions for
 - Proteomics /Biomarker Analysis
 - > MALDI Molecular Imaging
 - Small Molecules / Metabolite Studies
 - Food, Forensic & Environmental Screening
 - Functional Genomics/SNP Genotyping
 - Microorganism Identification and Classification

Requirements for Modern Mass Spectrometry

- Performance:
 - Mass resolution (separation)
 - Mass accuracy (selectivity)
 - Sensitivity
- Speed:
 - Analysis of complex systems (proteome, tissue, screening)
 - Compatibility with high speed separation: UHPLC
- Robustness & Ease of Use
- Complete Solutions

Basic parameters defining the quality of MS spectra

Mass Accuracy

Single Ion method

Full Width at Half Maximum (FWHM) or at 5% of the peak height

Resolution = m / (FWHM)

In that case R= 279 / 0.3 ~ 1000

$Dm accuracy = m_{real} - m_{measured}$

C₂₀ H₉+

249.0700

It is often expressed in parts per million (ppm) $ppm = 10^6 * \Delta m \ accuracy / m_{measured}$

249.0580

C₁₉ H₇ N+ C₁₃ H₁₉ N₃ O₂+

Double Ion method

2 adjacent ion peaks with a 10% valley max

In that case R= 1000 / 1 = 1000

- S/N Ratio
- Dynamic range
- Mass Range
- Speed

0.3 ~ 1000 sured per million (ppm)

i.e.: theoretical mass: 1000, measured mass: 999.9 error: 100 ppm

249.1479

3 different compounds 3 different exact masses High resolution, high accuracy

Overview of the talk

- Who is Bruker and who is **Bruker Daltonics?**
- Types of MS detectors for coupling with HPLC, UHPLC and nanoHPLC: **ESI, APCI, nanoESI or even MALDI?**
- Applications in metabolomics and food control:
 - HPLC-ESI-QTOF and -UHR-TOF (maXis)
 - ID of unknowns, impurities
 - Multitarget screening and quantitation using hrEIC
- Applications in proteomics:
 - PRIME combination of nanoLC-ESI (amaZon/impact) and nanoLC-MALDI (ultraflextreme MALDI-TOF/TOF) for ID of proteins
 - Top Down proteomics

ESI-based MS detection

Overview of the talk

- Who is Bruker and who is **Bruker Daltonics?**
- Types of MS detectors for coupling with HPLC, UHPLC and nanoHPLC: **ESI, APCI, nanoESI or even MALDI?**
- Applications in metabolomics and food control:
 - HPLC-ESI-QTOF and -UHR-TOF (maXis)
 - ID of unknowns SmartFormula 3D, FragmenExplorer, MetFrag
 - Multitarget screening using hrEIC
- Applications in proteomics:
 - PRIME combination of nanoLC-ESI (amaZon/impact) and nanoLC-MALDI (ultraflextreme MALDI-TOF/TOF) for ID of proteins
 - Top Down proteomics

micrOTOF II micrOTOF-Q II

Bruker is unique not only with its Mass Spectrometrs....

Special Ion Sources and Interfaces

Introducing **IonBooster** boost up sensitivity

Designed to boost electrospray sensitivity

Compatible with all current Bruker systems (Apollo II source)
High Flow compatibility: 100 - 1500µl/min

- •In general much more sensitive than ESI
- •Selective ion source: The "boost" effect reaches a factor of
- >100 for some compounds!

Compound ID: Unambiguous Determination

Starting point: each component has its unique mass!!! e.g. Reserpine, C₃₃H₄₀N₂O₉: 609.280657 Da [M+H]⁺

If only it was as easy as it looks on TV...

Need to get this sample through the mass spec... and look good doing it ! "

Theory and Practical Consequences....

Number of hits depending on reachable mass accuracy

What is Smart Formula?

BRUKER

Or known as TIP[™], SigmaFit[™]

with increasing compound mass, a tolerance of 0.001 Da or 5 ppm will not be selective enough to represent just one sum formula. Multiple formula will be possible within this mass window

\rightarrow need for another dimension of compound identity confirmation

Identification & Structure Elucidation

SmartFormula3D[™]

Making Sense of the MS/MS Data

- SmartFormula3D result
- 1 ppm window (maXis data)
- Allow unlimited C, H, N, O and up to S₃ and F₃
- SmartFormula3D analyses by mass, isotope pattern, adducts and fragment logic

	even
C 22H 27F 5N 50 5 436, 1621 0.0 0.1 9.6 EVEN 71.6 14 1 C 22H 25FN 505 H 2F2 40,0125 0.1 598, 1697 -0.1 4	
C 16 H 13 F 3 N S C 6 H 14 N 2 O 130.1109 -0.3 308.0715 0.3 2	even
C C 14 H 9 F 3 N S C 8 H 18 N 2 O 158.1421 -0.2 280.0402 0.2 1	even
MS Answers U C14H8F2NS C8H19FN2O 178.1479 0.2 260.0340 -0.2 3	even
C 14H9F 3N C 8H 18N 2OS 190.1140 -0.0 248.0682 0.0	even
C 15H 13 N S C 7H 14F 3 N 2 O 199,1060 -0.2 239,0763 0.2 2	odd
C 14H 9ENO C 8H 18E 2N 2S 212.1161 -0.2 226.0663 0.2	even
C 9H 19N 2 0 C 13H 8F 3N S 267.0330 -0.1 171.1492 0.1 1	even
C 7H 15N 2O C 15H 12F 3N S 295.0643 -0.1 143.1179 0.1	even
• Une answer: C14H 10F 3N OS 297.0434 0.2 141.1386 -0.1	even
C 7H 13N 2 O C 15H 14F 3N S 297.0798 0.1 141.1022 -0.1 14	even
	even
	even
C 4H 8N C 18H 19F 3N 2 O S 368.1170 0.0 70.0651 0.0 4	. even

MS/MS Interpretation

 Fragments and neutral losses can also be checked – relate to a structure Bruker Daltonics

Identification & Structure Elucidation

SmartFormula(3D) & Fragment Explorer

"De-novo" structure elucidation in-silico fragmentation with MetFrag

PesticideScreener: Multi-Target Screening

Database setup with standards:

<u>Multi compound standard</u> of 750 pesticides, 7 min gradient. Overlayed compound EICs, complete pesticide elution in about 5 min.

TargetAnalysis Workflow

Draw -

Ready

Bruker Daltonics

NUM

🖕 🌝 | AutoShapes • 🔨 🔌 🗆 🔿 🔛 🛃 🛃 🛃 🖉 • 🚣 • 🚍 🧮 🚍 😭 •

Compound Seeking

- Calculation of the theoretical mass of [M+H]⁺ from the sum formula

- Calculation of the corresponding EIC (smoothed, mass window specified in TA)
- "Find compounds"
- Reject peaks which are not within the allowed retention time window

TargetAnalysis Workflow

Compound identification

- Calculate mass spectrum, check mass accuracy and SigmaFit[™]
- Reject/accept compounds using criteria for mass accuracy and sigma value
- Rating and display of results

Multi-Target Screening of 750 Pesticides in a Single LC/MS Run

Application on real samples:

Sweet pepper :

Found	Compound Name	Reg.No.	Mol.Formula	PMI	d RT [min]	Err [ppm]	Err [mDa]	mSigma	Area	Intens.	RT,exp.[min]	RT,meas.[min]	m/z,calc.	m/z,meas.	Algorithm
+++	Azoxystrobin	13186008	C 22 H 18 N 3 O 5	[M+H]+	-0.03	2.2	0.9	7.5	43393	8738	8.94	8.97	404.1241	404.1232	Chromatogram
+++	Chlorpyriphos	292102	C9H12Cl3N1O3P151	[M+H]+	-0.02	1.2	0.4	19.6	54738	12476	12.66	12.68	349.9336	349.9332	Chromatogram
+++	Imidacloprid	13826103	C9H11Cl1N5O2	[M+H]+	0.00	2.1	-0.5	44.0	5810	1259	4.71	4.71	256.0596	256.0601	Chromatogram
+++	Iprodione	3673407	C13H14Cl2N3O3	[M+H]+	-0.00	0.7	0.2	39.6	1276	357	10.44	10.44	330.0407	330.0405	Chromatogram
+++	Iprodione (Na)	3673407	C13H13Cl2N3Na1O3	[I]1+	-0.00	1.0	-0.4	43.5	1005	270	10.44	10.44	352.0226	352.0230	Chromatogram
+++	Kresoxim-methyl	14339000	C 18 H 20 N 1 O 4	[M+H]+	0.00	1.6	0.5	2.0	94128	19979	10.73	10.73	314.1387	314.1382	Chromatogram
+++	Kresoxim-methyl (NH4)	14339000	C 18 H 23 N 2 O 4	[M+H]+	0.01	2.3	0.8	16.0	52705	11214	10.73	10.72	331.1652	331.1645	Chromatogram
	Metalaxyl	5783701	C 15 H 22 N 1 O 4	[M+H]+	-0.02	5.2	-1.5	296.6	3103	678	8.18	8.20	280.1543	280.1558	Chromatogram
	Methomyl	1675205	C5H11N2O2S1	[M+H]+	0.04	4.4	-0.7	199.5	3217	386	4.13	4.09	163.0536	163.0543	Chromatogram
++	Methomyl Fragm 88	1675205	C3H6N1S1	[M+H]+	0.04	4.3	0.4	36.6	542	138	4.13	4.09	88.0215	88.0212	Chromatogram
++	Oxamyl	2313500	C7H14N3O351	[M+H]+	0.00	4.4	1.0	82.7	2849	503	3.73	3.73	220.0750	220.0741	Chromatogram
+++	Oxamyl (NH4)	2313500	C7H17N4O351	[M+H]+	-0.00	0.2	-0.0	32.1	60032	10346	3.73	3.73	237.1016	237.1016	Chromatogram
	Oxamyl Fragm 72	2313500	C3H6N1O1	[M+H]+	-0.00	10.3	0.7	9.6	3743	639	3.73	3.73	72.0444	72.0436	Chromatogram
+++	Oxamyl Fragm 90	2313500	C3H8N1O2	[M+H]+	-0.00	0.7	0.1	6.1	15322	2601	3.73	3.73	90.0550	90.0549	Chromatogram
++	Penconazole	6624606	C 13 H 16 CI 2 N 3	[M+H]+	-0.00	0.8	0.2	61.9	10727	2320	10.81	10.81	284.0716	284.0714	Chromatogram
+++	Procymidone	3280908	C13H12Cl2N1O2	[M+H]+	-0.01	2.3	0.6	18.8	7169	1482	10.20	10.21	284.0240	284.0233	Chromatogram
++	Procymidone (NH4)	3280908	C13H15Cl2N2O2	[M+H]+	-0.01	4.5	1.3	19.9	25823	5285	10.20	10.21	301.0505	301.0492	Chromatogram
+++	Pyrimethanil	5311200	C 12 H 14 N 3	[M+H]+	0.00	0.6	0.1	28.0	29088	5231	9,43	9,43	200.1182	200.1181	Chromatogram
+++	Triadimenol	5521903	C14H19Cl1N3O2	[M+H]+	0.00	0.9	0.3	29.8	13470	1945	9.91	9.91	296.1160	296.1158	Chromatogram
+++	Triadimenol (Na)	5521903	C14H18Cl1N3Na1O2	[I]1+	0.00	1.2	0.4	22.7	9821	1742	9,91	9.91	318.0980	318.0976	Chromatogram
+++	Trifloxystrobin	14151707	C 20 H 20 F 3 N 2 O 4	[M+H]+	0.01	0.9	0.4	34.0	2087	562	11.59	11.58	409.1370	409.1366	Chromatogram

Endive (čekanka):

Found	Compound Name	Reg.No.	Mol.Formula	PMI	d RT [min]	Err [ppm]	Err [mDa]	mSigma	Area	Intens.	RT,exp.[min]	RT,meas.[min]	m/z,calc.	m/z,meas.	Algorithm
+++	Boscalid	18842506	C18H13Cl2N2O1	[M+H]+	-0.00	1.5	0.5	4.0	30512	6121	9.38	9.38	343.0399	343.0394	Chromatogram
++	Chlorpyriphos	292102	C9H12Cl3N1O3P151	[M+H]+	-0.02	1.8	-0.6	59.4	2061	420	12.66	12.68	349.9336	349.9342	Chromatogram
++	Imidacloprid	13826103	C9H11Cl1N5O2	[M+H]+	-0.01	3.6	0.9	16.2	48616	9731	4.71	4.72	256.0596	256.0587	Chromatogram
++	Linuron	33002	C9H11Cl2N2O2	[M+H]+	-0.01	3.4	0.8	19.6	10477	2034	9.27	9.28	249.0192	249.0184	Chromatogram
	Metalaxyl	5783701	C 15 H 22 N 1 O 4	[M+H]+	-0.02	0.8	-0.2	233.0	23509	4496	8.18	8.20	280.1543	280.1546	Chromatogram
+++	Propamocarb	2457905	C9H21N2O2	[M+H]+	-0.02	1.8	0.3	0.4	9618110	781054	3.40	3.42	189.1598	189.1594	Chromatogram
+++	Pyraclostrobin	17501300	C 19 H 19 Cl 1 N 3 O 4	[M+H]+	0.01	2.0	0.8	28.3	16424	3448	11.16	11.15	388,1059	388.1051	Chromatogram

Pomelo:

Found	Compound Name	Reg.No.	Mol.Formula	PMI	d RT [min]	Err [ppm]	Err [mDa]	mSigma	Area	Intens.	RT,exp.[min]	RT,meas.[min]	m/z,calc.	m/z,meas.	Algorithm
++	Chlorpyriphos	292102	C9H12Cl3N1O3P151	[M+H]+	0.00	3.5	1.2	33.3	8610	2272	12.66	12.66	349.9336	349.9323	Chromatogram
	Cyprodinil	12155202	C 14 H 16 N 3	[M+H]+	-0.06	2.5	-0.6	212.2	1004	179	11.02	11.08	226,1339	226.1344	Chromatogram
+++	Methidathion	95008	C6H12N2O4P153	[M+H]+	-0.01	1.1	0.3	3.5	31208	6495	8.67	8.68	302.9691	302.9688	Chromatogram
+++	Methidathion (NH4)	95008	C6H15N3O4P153	[M+H]+	-0.01	0.2	0.1	5.5	27494	5569	8.67	8.68	319,9957	319,9956	Chromatogram
++	Methidathion Fragm 145	95008	C4H5N2O2S1	[M+H]+	-0.01	3.6	0.5	12.1	12030	2393	8.67	8.68	145.0066	145.0061	Chromatogram
+++	Prochloraz	6774705	C 15 H 17 CI 3 N 3 O 2	[M+H]+	-0.00	1.2	0.4	7.9	56576	11148	11.23	11.23	376.0381	376.0376	Chromatogram
+++	Triazophos	2401708	C12H17N3O3P151	[M+H]+	0.01	0.1	-0.0	4.5	38161	8261	9.89	9.88	314.0723	314.0723	Chromatogram

Overview of the talk

- Who is Bruker and who is **Bruker Daltonics?**
- Types of MS detectors for coupling with HPLC, UHPLC and nanoHPLC: **ESI, APCI, nanoESI or even MALDI?**
- Applications in metabolomics and food control:
 - HPLC-ESI-QTOF and -UHR-TOF (maXis)
 - ID of unknowns, impurities
 - Multitarget screening and quantitation using hrEIC
- Applications in proteomics:
 - PRIME combination of nanoLC-ESI (amaZon/impact) and nanoLC-MALDI (ultraflextreme MALDI-TOF/TOF) for ID of proteins
 - Top Down proteomics

Proteins and peptides

Separation of Proteins and Peptides

- Liquid Chromatography HPLC, CapLC, NanoLC, 2D NanoLC etc.
- Capillary Electrophoresis CE
- 1D and 2D Gel Electrophoresis
- Affinity Chromatography (eg. magnetic beads HIC, IEX, IMAC, Prot-G, etc.)

Characterization, Identification and Quantitation of Proteins and Peptides, Localization of PTMs, Top-Down and Bottom-up proteomics

MASS SPECTROMETRY!!!

Mass Spectrometer

Ionization Source	Ion Optics/Isolation	Detector
Electrospray (ESI,	-	High Capacity Ion Trap (or LIT)
NanoESI)	Quadrupole (Q)	FT ICR
MALDI (SELDI)	Time of Flight (TOF)	Time of Flight (TOF)

ESI-based MS detection

nanoESI – nanoElectrospray

D. L. D. L.

Full Coverage of Technologies and Bioinformatics to Reveal the Proteome

The Proteome:

- far more complex than was ever expected
- highly dynamic in time, space and concentration
- highly variable due to modifications and mutations
- **requires** complementary methods to generate reliable and complete information:

Bottom-up Protein Identification

Any platform can make it ! Don't forget their other skills !

All protein numbers with FDR < 1%.

Bottom-up Protein Identification

Clear benefit provided by ESI/MALDI complementarity

prime

Protein

Extractor

(proteinscape)

ESI+MALDI: 3526 non-redundant protein IDs added ~20% by combining ESI and MALDI

Takes 3 mouseclicks in proteinscape

maXis impact Performance

Dynamic range of the maXis impact

1.1 pmol Unique peptides 120 110 fmol complete 4 decades 100 of concentrations 11 fmol 80 60 1.1 fmol 40 20 0 Catonicant Masel Carbonic annubres? dotin **Taylor Cone Spray** complement 51 53 ar BRUKER **Funneled in Gas Distribution Manifold** of CaptivSpray Source Etch Taper™ MS Inlet **Emitter Tip** /555 UPS-2 c

Jaltonics

amaZon speed – scan modes and resolution

- XtremeScan with 52.000 u/sec for real resolution of 2+ ions
- Full usability for MS/MS applications

Scan Mode	Resolution	u/sec	m/z
XtremeScan	2 + ions	52.000	3000
UltraScan	3 + ions	32.000	3000
Enhanced Resolution	4 + ions	8.100	3000
Maximum Resolution	8 + ions	5.200	3000
Extended Mass Range		27.000	6000
Peptide Scan MS MS/MS	4+ions 2+ions	8100 52.000	3000 3000

Scan mode	FWHM
XtremeScan	< 0.50
UltraScan	< 0.40
Enhanced Resolution	< 0.30
Maximum Resolution	< 0.10*

* For multiple charged ions

New analytical performance levels for – 8 Hz MS/MS speed

• Aquisition speed in MS/MS leading to drastically improved duty cycle

Averaged mass accuracy – amaZon speed

• Typical mass accuracy for a proteomics data set: ~ 33 mDa in average

Covering a wide dynamic range with amaZon speed –UPS-2 standard

• We are able to identify proteins covering 5 levels of concentration!

ID over 5 levels of protein concentration – UPS-2 standard

ETD in the amazon speed

- **Fluoranthene** Gate Lens (nCI) = block anion Gate Lens (nCI) = pass Skimmer = block
- 1. Electrospray ion accumulation
- 2. Precursor ion isolation
- 3. Reactant anion accumulation (nCI source)
- 4. ETD fragmentation
- 5. Scan

ETD for analysis of posttranslational modifications (PTMs)

- ETD is the solution for the assignment of modification sites
- outstanding software tools ProteinScape/biotools

Overview of the talk

- Who is Bruker and who is **Bruker Daltonics?**
- Types of MS detectors for coupling with HPLC, UHPLC and nanoHPLC: **ESI, APCI, nanoESI or even MALDI?**
- Applications in metabolomics and food control:
 - HPLC-ESI-QTOF and -UHR-TOF (maXis)
 - ID of unknowns, impurities
 - Multitarget screening and quantitation using hrEIC

• Applications in proteomics:

- PRIME combination of nanoLC-ESI (amaZon/impact) and nanoLC-MALDI (ultraflextreme MALDI-TOF/TOF) for ID of proteins
- Top Down proteomics

Top-down Characterization Prime: combine different MS technologies

Top-down Characterization Prime: combine different MS technologies

ETD/PTR spectrum of intact β -Interferon (MW ca. 22.5 kDa) with N- and C-termini fully confirmed. The read-out extends up to the S-S crosslink at C31 - C141.

MALDI Molecular Tissue Imaging:

Plus ETD for top-down biomarker ID

Bruker Daltonics

The spatially resolved molecular view into biology and disease

Prime: combines MALDI for discovery, ESI for top-down identification

49

MALDI Molecular Tissue Imaging:

The spatially resolved molecular view into biology and disease

Prime: combines MALDI for discovery, ESI for top-down identification

www.bdal.com

For research use only. Not for use in diagnostic procedures.