

Interaction of heavy metals with ^{Název:} graphene and iron based particles

Školitel: Mgr. Monika Kremplová, Ing. Dana Fialová, Ph.D., Ing. et Ing. David Hynek, Ph.D.

Datum: 12. 9. 2014

Název projektu: Mezinárodní spolupráce v oblasti "in vivo" zobrazovacích technik

Water contamination

- The availability of clean water is essential for all industries
- 2025 1.8 billion people will live in countries or regions with absolute water scarcity and two-thirds of the world's population will be exposed to stress conditions in relation to the lack of water sources
- One of the most serious environmental problems is water pollution by heavy metals
- Nanotechnology is nowadays considered as a promising way for the removal of pollutants from ground water and wastewater

Experimental part

- Four types of adsorbents expanded carbon MWCNT reduced graphene oxide Fe₂O₃ magnetic particles
- Scheme of experiment

Experimental part

Electrochemical determination of heavy metals

- 797 VA Computrace (Metrohm, Switzerland)
- Method: differencial pulse voltammetry
- 3-electrodes system: WE HMDE, drop size 0.4 mm² RE – Ag/AgCl/3M KCl AE – Pt
- Supporting electrolyte: 0.2 M acetate buffer, pH=5
- Method parameters:
 - Deposition potential -1.2 V
 - Accumulation time 240 s
 - Sample volume 15 µl
 - Volume of supporting electrolyte 1985 μl

Results

- Time interaction of heavy metals with different adsorbents
- 0-30 min, 1-24 hrs, applied concentration of metals 100 μM
- Concentration of adsorbed metal calculate from free metal in supernatant after filtration

Results

Results

• Adsorption capacity of graphene and FeMPs for Cd, Pb and Cu

Conclusion

- Four types of absorbents (reduced graphene oxide, expanded carbon, carbon nanotubes, and magnetic particles Fe2O3) were tested for adsorption of cadmium, lead, and copper ions.
- It has been found that reduced graphene oxide and Fe₂O₃ MPs have higher adsorption efficiency for all tested metals than the other two carbon materials
- For reduced graphene oxide and Fe particles the adsorption capacity was determined 100 μM

Acknowledgement

Ing. Simona Dostálová Ing. et Ing. David Hynek, Ph.D Prof. Ing. René Kizek, Ph.D

CZ.1.07/2.3.00/20.0148

Thank you for your attention

