CZ.1.07/2.3.00/20.0148 NANOLABSYS Mezinárodní spolupráce v oblasti *"in vivo"* zobrazovacích technik Laboratoř Metalomiky a Nanotechnologií

Vás zve na seminář:

microRNA electrochemical detection in connection with specific magnetic separation

Ing. Kristýna Šmerková, Mgr. Kristýna Hudcová, RNDr. Michal Masařík, Ph.D., Mgr. Markéta Vaculovičová, Ph.D. Abstrakt

The microRNAs (miRNAs) belong to small non-protein-coding RNAs. These miRNAs have different expressions at different diseases and they can serve as diagnostic and prognostic markers. That's why the sensitive, simple, fast and cost-effective detection method is

required. For optimal MPs utilization the binding capacity of MPs surface was determined. To the MPs the anti-miR-124 was added and after immobilization step and MPs separation the amount of unbound antisense ODN in retantate was measured. In the Fig. 1A the dependence of anti-miR-124 amount remained in the retentate on applied concentration to MPs is shown. In addition of 3μ M probe the unbound probe amount was only 3.3%. So for following experiment s was 3μ M anti-miR-124 added to 500 µg of MPs. The next optimization step was the elution temperature determination. During the elution dsRNA denaturation occurs and the miR-124 is released into the elution solution. The goal was to find such a temperature at which would be released

maximum miR-124 amount and simultaneously that does not cause the damage of streptavidin-biotin binding. For following experiments was elution temperature of 70°C was used, the peak height was 349 nA and the SWV signal of blank was insignificant.

pátek 17. 10. 2014, od 17:00

Ústav chemie a biochemie, Laboratoř metalomiky a nanotechnologií, Zemědělská 1, 613 00 Brno, Kontakt: <u>kizek@sci.muni.cz</u>

