

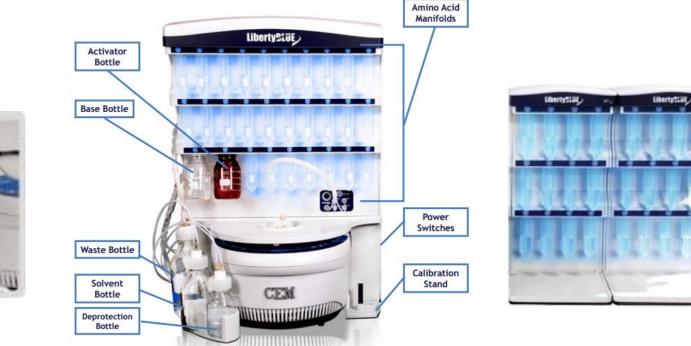
Synthesis of peptides, their conjugation, labelling and use forNázev:cancer cell penetration and drug delivery

Školitel: Ing. Vedran Milosavljevic, Doc. RNDr. Pavel Kopel, Ph.D.

Datum: 18.4.2014

Reg.č.projektu: CZ.1.07/2.3.00/20.0148

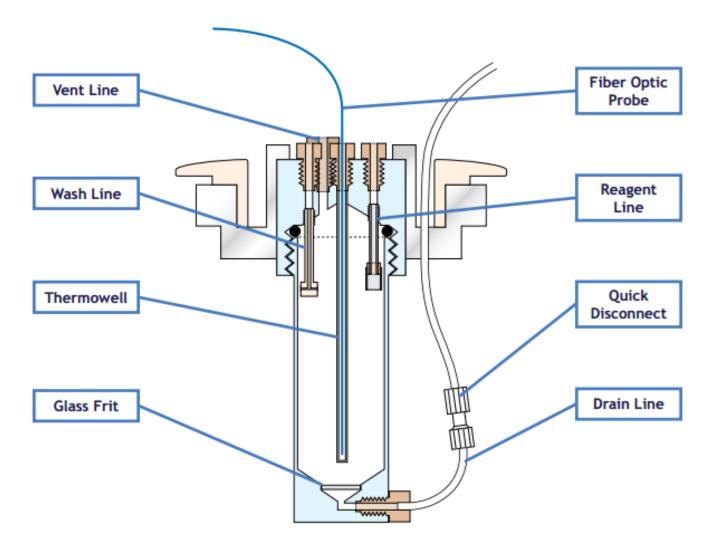
Název projektu: Mezinárodní spolupráce v oblasti "in vivo" zobrazovacích technik


Cell penetrating peptide - history of synthesis

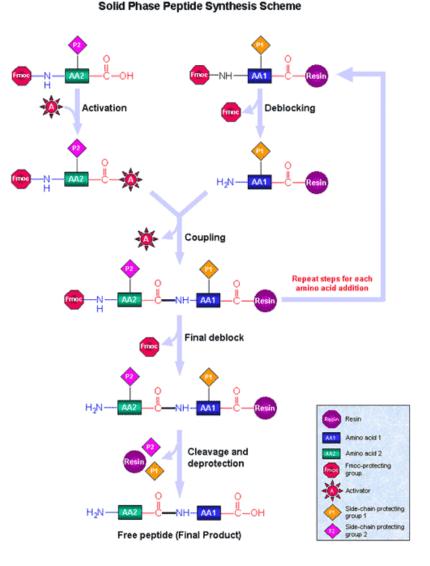
- 1965 Ryser, Hancock first description of polycationic peptide capable of traversing the cellular plasma membrane
- 1988 Lebleu's first CPP trans-activating transcriptional activator (Tat)
- 1994 Prochiantz cell-penetrating properties of penetratin

Characteristics

- (CPPs) are short cationic and/or amphipathic peptides, usually less than 30 amino acids
- CPPs can be arranged in three classes: protein derived CPPs, model peptides, and designed CPPs.
- Conjugation with different macromolecules (proteins, nucleic acids, siRNA, peptide nucleic acids (PNAs), small molecule therapeutics and quantum dots)
- Delivering cargo into cells (endocytosis or direct penetration)


Peptide Synthesizer

.


Reaction Vessel

Solid phase peptide synthesis

• Resin swelling

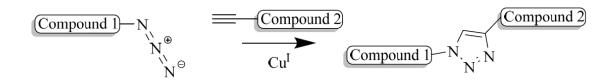
- Amino acid
- Deprotection
- Washing
- Microwave coupling
- Final deprotection
- Cleavage
- Isolation of peptide
- Lyophilization
- Maldi
- HPLC

Reagents for peptide synthesis

Activator and activator base

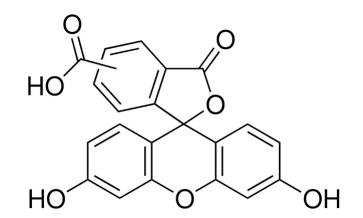
CEM Preference	Reagents	Cycle	Exceptions
1	AA/DIC/Oxyma in DMF	Single Amino Acid	His: Use 50 °C Cycle Arg: Use Double Arg Cycle
2	AA/HBTU/DIEA in DMF	Single Amino Acid	Cys: Use 50 °C Cycle His: Use 50 °C Cycle Arg: Use Double Arg Cycle
3	AA/DIC/Oxyma in NMP	Modified Single Amino Acid	Cys: Use 50 °C Cycle His: Use 50 °C Cycle Arg: Use Double Arg Cycle
4	AA/HBTU/DIEA in NMP	Modified Single Amino Acid	His: Use 50 °C Cycle Arg: Use Double Arg Cycle

Deprotection

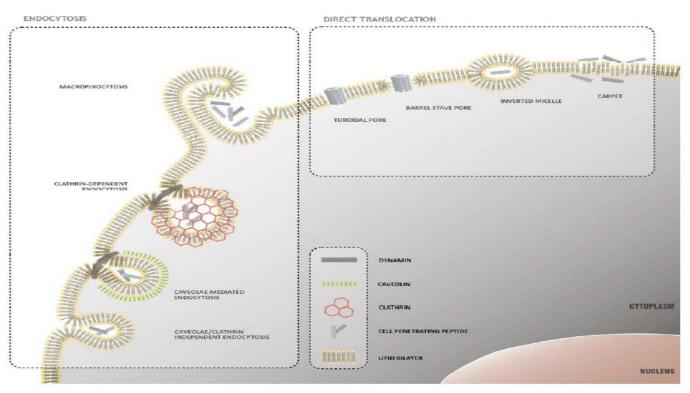

CEM Preference	Deprotection Cocktail	
1	10% (w/v) Piperazine in 10:90 (EtOH:NMP)	
2	20% Piperidine (v/v) in DMF or NMP	

Cleavage cocktails

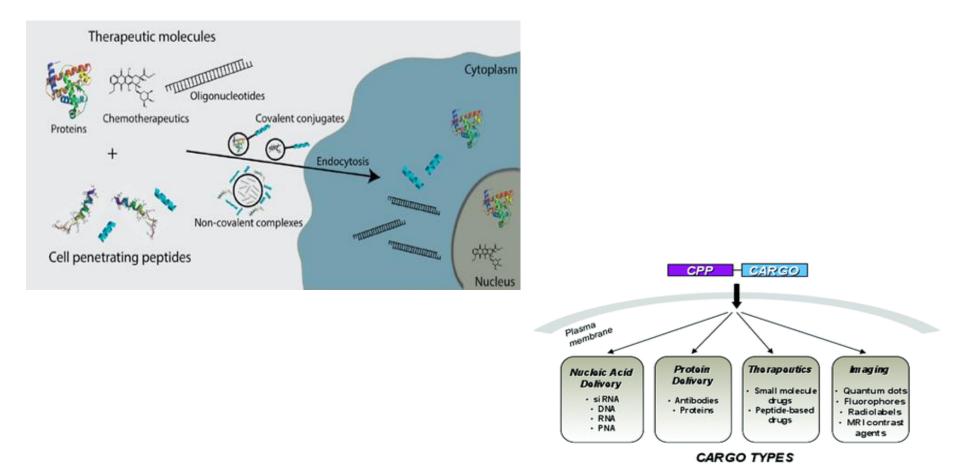
	Recipe	Hrs	Comments
В	TFA/phenol/water/ TIPS (88/5/5/2)	1-4	All peptides ¹ .
ĸ	TFA/phenol/water/ thioanisole/EDT (82.5/5/5/2.5)	1-4	All peptides ¹ .
ĥ	TFA/phenol/water/ thioanisole/ 1-dodecanethiol (82.5/5/5/5/2.5)	1-4	All peptides ¹ .
L	TFA/DTT/Water/ TIPS (88/5/5/2)	1-4	All peptides ¹
P	TFA/phenol (95/5)	1-4	<i>t</i> Bu group. Do not use with Trp, Met or Cys.
P+	TFA/phenol/ Methanesulfonic acid (95/2.5/2.5)	15 min	All peptides ^{1,2} .
R	TFA/thioanisole/ EDT/anisole (90/5/3/2)	1-8	All peptides ¹ .
F	TFA/TES (95/5)	1-4	Boc, <i>t</i> Bu,Trt. Do not use with Arg or Trp.
	TFA/water (95/5)	1-4	Boc, <i>t</i> Bu, Trt, Pbf ³ . Do not use with Trp, Met or Cys.
	TFA/DCM/indole (70/28/2)	1-4	Do not use with Arg ¹ .


Conjugation of peptide

- Poor cellular uptake charge neutral oligonucleotide, labelling peptide, peptide nucleic acids (PNA) or phosphorodiamidate morpholino oligomers (PMO), therapeutic drugs
- CPPs (Tat or Penetratin)
- Peptide linkers e-Azidocaproic acid, Fmoc-azidolysine
- Modification of peptide Azid and Alkyn group
- Peptide Conjugation via 'Click' Chemistry


Labelling Peptides

- Dye-labeled fluorescent peptides -important tools for cellular studies
- Used in fluorescence microscopy, fluorescence fluorimetry, fluorescence resonance energy transfer (FRET)
- High fluorescence quantum yields
- Stable and not destructive under most biological condition
- 5(6)-Carboxyfluorescein



Anticancer activities of CPPs peptides

- High specificity against cancer cells destroying cancer cells and protecting normal cells
- CPPs hydrophobicity and electrostatic interaction
- Effects of anticancer peptides cytoplasmic membrane disruption via micellization or pore formation, and induction of apoptosis

- Cancer cells develop resistance to these drugs anticancer peptides alternative chemotherapeutic agents
- Delivering biomolecules antigenic peptides, peptide nucleic acids, antisense oligonucleotides, full-length proteins, or even and liposomes

Future of CPPs

- Killing cancer cells while protecting normal cells and helping patients to recover rapidly
- Conjugation of therapeutic agents to CPPs
- Cancer cells develop resistance to these drugs CPPs as alternative
- Selective cytotoxicity
- No restriction with respect to the size or type of cargo
- CPPs drug constructs have great potential to increase the solubility, biodistribution, and pharmacokinetic profiles of currently approved chemotherapeutic drugs.

Antitumor activity	of buforin	IIb against	60 human	tumor cell line	s
--------------------	------------	-------------	----------	-----------------	---

Cell lines	IC50 (µg/ml)	Cell lines	IC50 (µg/ml)	Cell lines	IC50 (µg/ml
Leukemia		CNS cancer		Ovarian cancer	
CCRF-CEM	14.7	SF-268	12.4	IGROV1	9.0
HL-60	11.3	SF-295	12.9	OVRCAR-3	15.2
K-562	8.2	SF-539	9.5	OVRCAR-4	17.6
MOLT-4	17.0	SNB-19	13.8	OVRCAR-5	13.8
RPMI-8226	10.5	SNB-75	15.5	OVRCAR-8	13.0
SR	20.2	U251	10.6	SK-OV-3	12.6
Breast cancer		Melanoma		Colon cancer	
MCF7	15.1	LOX IMVI	9.5	COLO 205	11.2
NCI/ADR-RES	11.5	MALME-3M	10.9	HCT-116	14.6
MDA-MB-231	11.3	M14	15.1	HCT-15	13.2
HS 578T	11.7	SK-MEL-2	11.1	HT29	17.6
MDA-MB-435	11.3	SK-MEL-5	8.9	KM12	12.0
MDA-N	10.6	UACC-257	12.5	SW-620	12.7
BT-549	12.9	UACC-62	10.6		
T-47D	23.9				
Non-small cell lung c	ancer	Renal cancer		Prostate cancer	
A549	11.7	786-0	12.2	PC-3	12.0
EKVX	12.1	A498	10.0	DU-145	15.3
HOP-62	12.6	ACHN	12.0		
HOP-92	7.2	CAKI-1	14.1		
NCI-H226	13.3	RFX 393	11.0		
NCI-H23	10.8	SN12C	11.4		
NCI-H322M	10.7	TK-10	13.1		
NCI-H460	12.1	UO-31	10.6		
NCI-H522	11.2				

Examples of cell-penetrating peptides (CPPs)

Name	Class
sequence	source
Penetratin	protein derived CPP
RQIKIWFQNRRMKWKK ^a	Drosophila Antennapedia homeodomain (amino acids 43-58)
Tat	protein derived CPP
CGRKKRRQRRRPPQC ^a	protein from human immunodeficiency virus 1 (amino acids 48-60)
pVEC	protein derived CPP
LLIILRRRIRKQAHAHSK-amide	derived from murine vascular endothelial cadherin
MAP	model peptide
KLALKLALKALKAALKLA-amide	
(Arg) ₇	model peptide
RRRRRR	
MPG	designed CPP
GALFLGFLGAAGSTMGAWSQPKSKRKV	peptide derived from fusion sequence of HIV-1 gp41 protein coupled to peptide derived from the nuclear localization sequence of SV40 T-antigen
Transportan	designed CPP
GWTLNSAGYLLGKINLKALAALAKISIL-amide	minimal active part of galanin (amino acids l–12) coupled to mastoparan via \mbox{Lys}^{13}

Thank you for your attention!

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ