

Monitoring the properties of erythrocytesand leucocytes exposed to metal elementsNázev:and compounds using flow cytometry

Školitel:Branislav Ruttkay-Nedecky, Jiri Kudr

Datum: **19.9.2014**

Reg.č.projektu: CZ.1.07/2.3.00/20.0148

Název projektu: Mezinárodní spolupráce v oblasti "in vivo" zobrazovacích technik

Hematology analyser BC 5800

- Number of blood cells can be measured on a hematology analyser.
- 24 parameters
- Leukocyte count and differential
- Erythrocyte count
- Platelet count
- Determination of the hemoglobin concentration in the blood

Hematology analyser

Principles Impedance method for RBC and PLT counting

Cyanide free reagent for hemoglobin test

Flow cytometry + laser light scatter + chemical dye method for WBC differential analysis and WBC counting

Complete blood count

- Number of white blood cells (WBC) leukocytes, differential count: lymphocytes (LYM), monocytes (MON), neutrophils (NEU), eosinophils (EOS), basophils (BAS) a and their percentage content
- Number of red blood cells (RBC) erythrocytes, hemoglobin concentration in the blood (HGB), hematocrit (HCT), RBC volume (MCV), mean amount of HGB in RBC (MCHC), average concentration of HGB in RBC (MCHC), distribution width of RBC (RDW)
- Number of platelets (PLT) thrombocytes, distribution width of platelets (PDW), platelet volume (MPV)

Complete blood count

Review					• 1	🖶 🚅 🛛	BEN	29-08-	-2012 11:22
Current	: Sample dat	abase	Pos./	Total:507 /	511	1		t	
WBC Neu# Lym# Mon# Eos# Bas# Neu% Lym% Mon% Eos%	6.32 3.01 2.46 0.51 0.30 0.04 L 47.4 39.0 8.1 4.8	10^9/L 10^9/L 10^9/L 10^9/L 10^9/L 10^9/L % % % %	WBC Flag	ID: Mode Name Sex: Dept Char	4 : 0V-1 : 29-1 : : t No.:	WB-CBC+5DIFF 08-2012 09:12 BAS	50		
RBC HGB HCT MCV MCH MCHC RDW-CV RDW-SD	5.19 131 44.8 86.4 L 25.2 L 292 11.8 38.5	* 10^12/L g/L % fL pg g/L % fL 10.000	RBC Flag	RBC		PLT			
PLT MPV PDW PCT P-LCC P-LCR	219 10.0 16.3 0.219 87 39.5	10^9/L fL % 10^9/L %	PLT Flag	0 5	0 100 150 20	0 250 fL 0	5 10	15 20) 25 fL
Main	Count	Table	0raph	Edit Info.	Print	RUO Screen	Edit R	esult	Restore

Result of hematological blood test – blood count:

WBC - leukocyte count , RBC – erythrocyte count, PLT – platelet count, HGBhemoglobin concentration in the blood

On the figures with black background: DIFFdifferential except basophils (lymphocytes – green. monocytes – pink, neutrophils – blue, eosinophils-red, other cells violet) , **BASO**-basophils (basophils-red, other cells blue, RBC-distribution of erythrocytes, PLT-distribution of platelets

Aim of the work

- Investigate interactions of metal complexes (Cu, Zn and Co) and metal nanoparticles (PdNPs, RuNPs) with blood cells using hematology analyser
- Observe influence of metal compounds on blood cell count

 $[Cu_3(pmdien)_3(\mu-ttc)](ClO_4)_3 \quad [Zn_3(pmdien)_3(\mu-ttc)](ClO_4)_3 \quad [Co_3(pmdien)_3(\mu-ttc)](ClO_4)_3 \quad [Co_3(pmdien)_$

These metal complexes were cytotoxic to some tumor cell lines

PdNPs (PdCl₂)

RuNPs (RuCl₃.2.5 H₂O)

Control

Blood cells count diluted in phosphate buffer (1:2)

WBC 3.02×10^9 cells/mL MON 0.23×10^9 cells/mL EOS 0.11×10^9 cells/mL RBC 1.84×10^{12} cells/mL PLT 61×10^9 cells/mL

Blood cells count diluted in phosphate buffer (1:2) after 1 hour

0 50 100 150 200 250 fL 0 5 10 15 20 25 fL

WBC 3.32×10^9 cells/mL MON 0.21×10^9 cells/mL EOS 0.13×10^9 cells/mL RBC 1.85×10^{12} cells/mL PLT 62×10^9 cells/mL

$[Cu_3(pmdien)_3(\mu-ttc)](ClO_4)_3$

Blood cells count diluted in phosphate buffer (1:2), Cu 345 μ g/mL

WBC 2.98 x 10^9 cells/mL MON 0.24 x 10^9 cells/mL EOS 0.12 x 10^9 cells/mL RBC 1.84 x 10^{12} cells/mL PLT 56 x 10^9 cells/mL Blood cells count diluted in phosphate buffer (1:2), Cu 345 μ g/mL after 1 hour

WBC 3.64 x 10^9 cells/mL MON 0.06 x 10^9 cells/mL EOS 0.37 x 10^9 cells/mL RBC 2.08 x 10^{12} cells/mL PLT 51 x 10^9 cells/mL

$[Zn_3(pmdien)_3(\mu-ttc)](ClO_4)_3$

Blood cells count diluted in phosphate buffer (1:2), Zn 345 μ g/mL

Blood cells count diluted in phosphate buffer (1:2), Zn 345 μ g/mL after 1 hour

WBC 3.00×10^9 cells/mL MON 0.17×10^9 cells/mL EOS 0.13×10^9 cells/mL RBC 1.85×10^{12} cells/mL PLT 57×10^9 cells/mL

WBC 2.99 x 10^9 cells/mL MON 0.16 x 10^9 cells/mL EOS 0.43 x 10^9 cells/mL RBC 1.72 x 10^{12} cells/mL PLT 64 x 10^9 cells/mL

$[Co_3(pmdien)_3(\mu-ttc)](ClO_4)_3$

Blood cells count diluted in phosphate buffer (1:2), Co 345 μ g/mL

WBC 2.97 x 10^9 cells/mL MON 0.18 x 10^9 cells/mL EOS 0.11 x 10^9 cells/mL RBC 1.86 x 10^{12} cells/mL PLT 59 x 10^9 cells/mL Blood cells count diluted in phosphate buffer (1:2), Co 345 μ g/mL after 1 hour

0 50 100 150 200 250 fL 0 5 10 15 20 25 fL

WBC 3.66 x 10^9 cells/mL MON 0.12 x 10^9 cells/mL EOS 0.54 x 10^9 cells/mL RBC 1.41 x 10^{12} cells/mL PLT 42 x 10^9 cells/mL

PdNPs (PdCl₂)

Blood cells count diluted in phosphate buffer (1:2), Pd 345 μ g/mL

WBC 2.95 x 10^9 cells/mL MON 0.21 x 10^9 cells/mL EOS 0.11 x 10^9 cells/mL RBC 1.87 x 10^{12} cells/mL PLT 58 x 10^9 cells/mL Blood cells count diluted in phosphate buffer (1:2), Pd 345 μ g/mL after 1 hour

WBC 3.10×10^9 cells/mL MON 0.24×10^9 cells/mL EOS 0.26×10^9 cells/mL RBC 1.81×10^{12} cells/mL PLT 58×10^9 cells/mL

RuNPs (RuCl₃.2.5 H₂O)

Blood cells count diluted in phosphate buffer (1:2), Ru 345 μ g/mL

WBC 3.08×10^9 cells/mL MON 0.23×10^9 cells/mL EOS 0.12×10^9 cells/mL RBC 1.85×10^{12} cells/mL PLT 60×10^9 cells/mL Blood cells count diluted in phosphate buffer (1:2), Ru 345 μ g/mL after 1 hour

0 50 100 150 200 250 fL 0 5 10 15 20 25 fL

WBC 3.35 x 10^9 cells/mL MON 0.16 x 10^9 cells/mL EOS 0.15 x 10^9 cells/mL RBC 1.71 x 10^{12} cells/mL PLT 60 x 10^9 cells/mL

Conclusions

- 3 metal complexes (Cu, Zn and Co) and 2 nanoparticles (Pd, Rd) were analysed for their effect on the blood cell count
- The biggest effect had metal complexes and nanoparticles on the number of eosinophils and monocytes
- The number of monocytes by metal complexes increased 3 times in comparison to control, the highest effect had Co complex

Acknowledgment

Grant agency

Financial support from the project NANOLABSYS CZ 1.07/2.3.00/20.0148 is highly acknowledged

Acknowledgment

Prof. Ing. Rene Kizek, Ph.D. Doc. RNDr. Pavel Kopel, Ph.D. Ing. Jiri Kudr Ing. Lukas Nejdl Martina Stankova

Thank you for your attention

Thank you for your attention

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ