

Název:Monitoring of nucleic acids interaction with
coordination compounds of copper and nickel,
their characterization including mass spectrometryŠkolitel:Pavel Kopel

Datum: 19.4.2013

Reg.č.projektu: CZ.1.07/2.3.00/20.0148

Název projektu: Mezinárodní spolupráce v oblasti "in vivo" zobrazovacích technik

Trithiocyanuric acid (2,4,6-Trimerkapto-s-triazine)

Cu(PPh₃)₂(ttcH₂)

 $[(Co(en)_2)_2(ttc)](ClO_4)_3.2H_2O$ (en = ethylenediamine)

(SnMe₃)₃(ttc)

cyclen = 1,4,7,10-tetraazacyclododecane

[{Cu(PPh₃)}₆(ttc)₂]

[Ni(bapen)(ttcH)]·2H2O (bapen = N,N'-bis(3-aminopropyl) ethylenediamine)

[Ni(dpta)(ttcH)(H2O)]·H2O (dpta = dipropylenetriamine)

[Ni(taa)(ttcH)] (taa = tris-(2-aminoethyl)amine)

[Ni(pmdien)(tteH)] (pmdien = N,N,N',N'',N''- pentamethyldiethylenetriamine)

	K-562	MCF7	G361	HOS
(1) [Zn(pmdien)(ttcH)]	>25	>25		
(2) [Zn(taa)(ttcH)]·H ₂ O	>100	>100		
(3) [Fe(nphen) ₂ (ttcH)]·H ₂ O	5.1	3.9	3.4	3.0
(4) [Fe(dmbpy) ₃](ttcH ₂) ₂ ·4H ₂ O	9.8	22.7		
(5) [Mn(phen) ₂ (ttcH)]·H ₂ O	2.7	6.0	3.8	1.6
(6) Mn(bpy)(ttcH)·H ₂ O	65.6	45.3		
(7) [Ni(taa)(ttcH)]·H ₂ O	>25	>25		
(8) [Ni(phen) ₃](ttcH)·5H ₂ O	>25	>25		
ttcNa ₃ ·9H ₂ O	>100	>100	>100	>100
oxaliplatin	8.8	18.2	7.1	6.8
cisplatin	4.7	10.9	4.7	3.0

Cytotoxicity of complexes was studied on tumor lines:

K-562-human chronic myelogenous leukaemia, MCF7-human breast adenocarcinoma, G361-Human malignant melanoma, HOS-human osteogenic sarcoma.

Values of IC50 (µM) are listed in table.

Zinc complexes with pentamethyldiethylenetriamine

[Zn(pmdien)(ttcH)] $[Zn_{2}(pmdien)_{2}(ttc)](ClO_{4}).H_{2}O$ $[Zn_{3}(pmdien)_{3}(ttc)](ClO_{4})_{3}$

[Cu₃(pmdien)₃(ttc)](ClO₄)₃

ESI⁺ MS (m/z): 1182, 1083, 984, 885 [Cu₃(pmdien)₃(ttc)H]⁺, 711 [Cu₃(pmdien)₃H]⁺, 648 [Cu₂(pmdien)₃H]⁺, 237 [Cu(pmdien)H]⁺, 178 [ttcH]⁺, 175 [pmdienH]⁺

Temperature dependence $\chi_{M}(\circ)$ a $\chi_{M}T(\bullet)$

 $\chi_{\rm M} T \approx 0.41 \pm 0.01 \text{ cm}^3 \text{mol}^{-1} \text{K}$ $\mu_{\rm eff}$ 1.81 B.M., J = -23 cm⁻¹, g = 2.08

> Curie –Weiss 200 – 300 K $C = 1.26 \text{ cm}^3 \text{mol}^{-1}\text{K}$ $\Theta = -4.8 \text{ K}$ $\chi_M T = 1.08 \text{ cm}^3 \text{mol}^{-1}\text{K}$ (300 K) 0.268 cm}^3 \text{mol}^{-1}\text{K} (1.8 K) $\mu_{\text{eff}} = 2.95 \text{ B.M.}$ (300 K) 1.47 B.M. (1.8 K)

[Cu₃(pmdien)₃(ttc)](ClO₄)₃

The plot of the magnetization per trimer molecule versus applied field at T = 2K.

X – ray study of [Ni₃(pmdien)₃(ttc)](ClO₄)₃

Numbering scheme of the complex

Unit cell in a view along a axis. Ni polyhedra in blue. Perchlorate tetrahedra in green.

Projection along crystallographic three fold axis

[Ni₃(pmdien)₃(ttc)](ClO₄)₃

Right-handed helical arrangements of nickel complexes.

Cytotoxic activity G-361 (IC50 = 31.6 μ M) HOS (IC50 = 15.5 μ M), K-562 (IC50 = 45.9 μ M) MCF7 (IC50 = 25.1 μ M). Cisplatin (2.9, 3.0, 4.7 and 10.9 μ M) Oxaliplatin (7.1, 6.8, 8.8 and 18.2 μ M)

LSI⁺ MS (m/z): 1069, 969,
869 [Ni₃(pmdien)₃(ttc)H]⁺,
699 [Ni₃(pmdien)₃H]⁺,
636 [Ni₂(pmdien)₃H]⁺,
232 [Ni(pmdien)H]⁺,
178 [ttcH]⁺,
174 [pmdienH]⁺

Magnetization measurements of [Ni₃(pmdien)₃(ttc)](ClO₄)₃

Temperature dependence of magnetization in 16 - 2 K range and a field of 50 and 25 Oe, respectively:

■,● – FCM (field cooled magnetization), □,○ – ZFCM

Hysteresis loop including the virgin curve for 1 at 2 K.

Ferromagnetic transition

increasing M when T decreases below

 $T_{c} = 10 \text{ K}.$

Hysteresis loops at variable temperature.

AC magnetic susceptibility data of [Ni₃(pmdien)₃(ttc)](ClO₄)₃

Conclusion

The AC data shows a behaviour that is not compatible with a SMM, while it may be appropriate for a spin glass system.

The magnetic data reveal a ferromagnetic exchange coupling that is further tuned by asymmetric and/or antisymmetric exchange. The occurence of a magnetic phase transition was confirmed by FCM and ZFCM measurements. The magnetization measurements show on ferromagnetic coupling.

Molecular structure of $[Mn_2(phen)_4(\mu-ttc)](ClO_4)$

Table. Bond len	gths [A]
Mn(1)-N(3)	2.180(2)
Mn(1)-N(10B)	2.255(2)
Mn(1)-N(10A)	2.257(3)
Mn(1)-N(1B)	2.294(2)
Mn(1)-N(1A)	2.308(3)
Mn(1)-S(1)	2.6118(9)
Mn(2)-N(2)	2.220(2)
Mn(2)-N(1C)	2.229(3)
Mn(2)-N(10D)	2.254(3)
Mn(2)-N(10C)	2.290(3)
Mn(2)-N(1D)	2.295(3)
Mn(2)-S(2)	2.6143(1
S(1)-C(1)	1.729(3)
S(2)-C(2)	1.732(3)
S(3)-C(3)	1.695(3)

0)

Trinuclear complexes $[Mn_3(nphen)_6(\mu-ttc)](ClO_4)_3, [Mn_3(baphen)_6(\mu-ttc)](ClO_4)_3$

Molecular structure of $[Ni_3(abb)_3(H_2O)_3(\mu-ttc)](ClO_4)_3 \cdot 3H_2O \cdot EtOH abb = 2,2'-azadimethylenebis(benzimidazole)$

Table. Bond ler	ngths [Å].
Ni1-N1B	2.041(3)
Ni1-N1	2.047(3)
Ni1-N1A	2.057(3)
Ni1-01	2.102(3)
Ni1-N11	2.121(3)
Ni1-86	2.5566(11)
Ni2-N5	2.030(3)
Ni2-N1C	2.056(4)
Ni2-N1D	2.062(4)
Ni2-N22	2.101(4)
Ni2-O2	2.109(3)
Ni2-84	2.5549(12)
Ni3-N1F	2.044(3)
Ni3-N3	2.043(3)
Ni3-N1E	2.057(3)
Ni3-O3	2.100(3)
Ni3-N33	2.107(3)
Ni3-82	2.5622(11)

Molecular structure of $[Ni_7(pmdien)_6(H_2O)_2(\mu-ttc)_3](ClO_4)_5 \cdot 3H_2O$

Molecular structure of [Ni₂(pmdien)₂(H₂O)(µ-tdga)](ClO₄)₂·2H₂O

Thiodiglycolic acid = thiodiacetic acid

Jerzy Mrozinski Vratislav Langer Alina Bieńko Božena Kalińska Andrzej Pochaba Roman Boča Karel Doležal

Acknowledgements

Financial support from CYTORES GA CR P301/10/0356, NANIMEL GA CR 102/08/1546, NANOLABSYS CZ.1.07/2.3/.00/20.148 and CEITEC CZ.1.05/1.1.00/02.0068 is highly acknowledged.