

Technická specifikace zařízení vhodnýchNázev:pro analýzu magnetických částice

Školitel: Vojtěch Adam

Datum: 5.11.2013

NanoBioMetalNet

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu

1) β -Fe₂O₃ powder prepared by thermally induced solidstate reaction of NaCl and Fe₂(SO₄)₃ in air at 400°C

Reaction mechanism

R. Zboril et al: Chem. Mater. 14, 969-982 (2002).

XRD identification of reaction products: NaFe(SO₄)₂ - monoclinic Na₃Fe(SO₄)₃ - hexagonal β -Fe₂O₃ -cubic Na₂SO₄ - orthorhombic

ratio of Fe³⁺ ions: $5/3/2 \Rightarrow$ molar ratio: β -Fe₂O₃ / Na₃Fe(SO₄)₃ / NaFe(SO₄)₂ = 5/6/4

30NaCl + 10Fe₂(SO₄)₃ + 15/2O₂ → 6Na₃Fe(SO₄)₃ + 4NaFe(SO₄)₂ + 5β-Fe₂O₃ + 4Na₂SO₄ + 15Cl₂

Theoretical weight loss: 14.2%

Experimental weight loss from isothermal TG: 14.3% (for initial mixture of NaCl/Fe₂(SO₄)₃=3/1)

1) β-Fe₂O₃ from solid-state reaction of NaCl and Fe₂(SO₄)₃

ļ

5

AFM vertical dimensions: 14-22 nm TEM lateral dimensions:15-25 nm

2) Amorphous Fe_2O_3 nanopowder prepared by thermally induced oxidative decomposition of $(NH_4)_4[Fe(CN)_6]$

Formation mechanism - TG/DTA

Zboril, et al.: Crystal Growth & Design 4, (2004) 1317.

 $\Sigma \Delta m_{\text{teor.}} = 71,9\%$

 $2(\mathrm{NH}_4)_4[\mathrm{Fe}(\mathrm{CN})_6] + 7/2\mathrm{O}_2 \rightarrow \mathrm{Fe}_2\mathrm{O}_3 + 6\ (\mathrm{CN})_2 + 8\mathrm{NH}_3 + 4\mathrm{H}_2\mathrm{O}$

2) Amorphous Fe_2O_3 nanoparticles from $(NH_4)_4[Fe(CN)_6]$

Formation mechanism - RT Mössbauer spectroscopy

 $(\mathrm{NH}_4)_4[\mathrm{Fe}(\mathrm{CN})_6] \rightarrow (\mathrm{NH}_4)_3[\mathrm{Fe}(\mathrm{CN})_6] \rightarrow (\mathrm{NH}_4)_3[\mathrm{Fe}(\mathrm{CN})_5] \rightarrow \mathrm{NH}_4[\mathrm{Fe}(\mathrm{CN})_4] \rightarrow \mathrm{Fe}_4[\mathrm{Fe}(\mathrm{CN})_6]_3 \rightarrow \mathrm{Fe}_2\mathrm{O}_3$

2) Amorphous Fe₂O₃ nanoparticles from (NH₄)₄[Fe(CN)₆]

4) Thermal syntheses of Fe₃O₄ and α-Fe nanoparticles embedded in nanocrystalline MgO matrix O. Schneeweiss, R. Zboril, N. Pizurova, M. Mashlan, E.

O. Schneeweiss, R. Zboril, N. Pizurova, M. Mashlan, E. Petrovsky, J. Tucek: *Nanotechnology* **17**, 607-616 (2006).

Precursors

Nanocrystalline Mg prepared by spark erosion technique

Mixture of precursors heated in hydrogen

4) Thermal syntheses of Fe₃O₄ and α -Fe nanoparticles embedded in nanocrystalline MgO matrix

300°C, hydrogen - magnetite nanoparticles

4) Thermal syntheses of Fe₃O₄ and α -Fe nanoparticles embedded in nanocrystalline MgO matrix

600°C, hydrogen - Iron nanoparticles

Advantages of the used matrix:

nanocrystalline character, low specific weight, high chemical and thermal stability, non-toxicity, biocompatibility
Application potential of such magnetic nanocomposites:
biomagnetic separations, drug delivery, hyperthermia treatment

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Děkuji Vám za pozornost

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu