

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Using paramagnetic particles and PNA for

Name: isolation and electrochemical detection

of DNA corresponding influenza virus

Autor: Nguyen Viet Hoai

Date: 15.1.2014

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu

Contents

VIET NAM

- First appearance of influenza virus: 12/2003.
- Up to now: 3 pandemics caused 95 cases of H5N1 and 43 people were dead.
- First pandemic 12/2003 27/4/2004: 57 provinces and cities, 43.9 million of domestic fowls were dead.
- Second pandemic 4/2004 11/2004: 17 provinces and cities, 84.078 thousand of domestic fowls were dead.
- Third pandemic 12/2004 5/2005: 36 provinces and cities.

VIET NAM

Places suffered from H5N1 pandemic in Vietnam

PNA

❖ PNA has a backbone made from repeating N-(2-aminoethyl)glycine units linked by peptide bonds. The different bases (purines and pyrimidines) are joined to the backbone by methylene or carbonyl linkages.

❖ PNA/DNA is better thermal stability than DNA/DNA

❖ PNA has various application such as: antigen and antisense therapy; PNA as molecular biology and functional genomics, PNA as a probe for diagnosis and detection, and PNA as biosensor.

PNA in gene therapeutic

PNA offer the ability to be used as adapters, linking plasmid vectors to peptides, proteins, drugs, and molecular tracers.

❖ PNA can be also used to form PNA/DNA duplex with DNA influenza virus. PNA/DNA duplex formation lowers ability of replication of DNA influenza virus.

Paramagnetic particles

* Small size but large surface (2 nm-10 μm), different variant of modification.

Their ability to facilitate bioactive molecules binding

* Advantages of paramagnetic particles: easy using, short time.

METHOD

Method

Automatic pipetting station EP Motion 5075 (Eppendorf, Germany) was used for fully automated isolation process of target DNA sequence (5'-CCTCAAGGAG-3') corresponding to influenza virus by using Oligo dt(25) and PNA (5'-AAAAACTCCTTGAGG-3').

* Square wave voltammetry, square wave voltammetry coupled with adsorptive transfer technique, and differential pulse voltammetry method were used for electrochemical detection of nucleic acids.

RESULT AND DISCUSSION

Result and discussion

Figure.1: Scheme of isolation and detection of influenza derived oligonucleotide by MPs and PNA probe. A PNA biding MPs, B addition of DNA target sequence, C biding of DNA to MPs with PNA, D electrochemical detection of isolated product.

Result and discussion

Fig. 2: Dependence of relative CA peak height (%) of PNA and PNA/DNA on concentration of applicated target DNA influenza derived sequence (μg/mL). Mearurements were carried out by AdT SWV. Parameters of AdT SWV was: time of accmulation 120s; purge time 60s; frequency 280 Hz; initial potential 0 V; end potential -1.8 V; step potential 0.00495 V; amplitude 0.02505 V.

Conclusion

* Electrochemical method is a powerful technique for nucleic acid determination.

❖ PNA can be used as biosensor for DNA target sequence because PNA shows ability to hybridize with DNA with high affinity and specify.

❖ Paramagnetic particles and PNA as a probe can be used for isolation of DNA target sequence because this established technique can facilitate DNA isolation process.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Thank you for your attentoin

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu

