

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Název: Antimicrobial peptides

Školitel: Zbyněk Heger

Datum: 2. 8. 2013

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu

Content

- Introduction
- 2. General information
 - Structure and chemical properties
 - Mechanisms of action
- 3. Apidaecins
 - Characteristics
 - Properties
- Prospects to the future

Asn Val

Antimicrobial Peptides

3

- Ubiquitous in nature,
- described in bacteria, fungi, plants and all vertebrates,
- Important part of mammals imunne system,
- nowadays known more than 1000 representatives,

cationic and anionic peptides.

General Structure of Cationic Peptides

4

- Peptides having less than 40 amino acids,
- lysine and arginine residues,
- high content of hydrophobic domains residues,
- lack of information about the structure of most of peptides.

Secondary structures of antimicrobial peptides

β - stranded

α - helical

Extended

Looped

Chemical Properties

5

- Positive charge interaction with the bacterial membrane,
- distinction of microbial cells, based on the composition of the

bacterial membrane rich on phospholipids.

Adopted from Zasloff et al. (2002): Antimicrobial peptides of multicellular organisms. Nature: 415 (389-395).

Chemical Properties

6

Aurelin R30 Negative Positive Polar Hydrophobic

Shenkarev et al. (2012): Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochemical and Biophysical Research Communications: 429 (63-69).

Mechanisms of Action

7

- Can kill Gram negative and Gram positive bacteria (including resistant strains), mycobacteria, viruses and fungi,
- described also influence on cancerous cells,
- electrostatic interaction
 with membrane,
- depolarization of membrane and cell death,
- all factors elusive.

Fjell et al. (2012): Designing antimicrobial peptides: form follows function. Nature Reviews Drug Discovery: 11, 37-51

Mechanisms of Action

Mechanisms of Action

Possible Resistance

- Production of proteases degradation of peptides Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae,
- Expression of fosfatidylcholin in high levels imitation of mammal cell membranes Haemophillus influenzae,
- mutation of mur B gene peptidoglycans changes induced resistance Staphylococcus aureus,
- · reverse exclusion of peptide from cell Neisseria gonorrheae,
- Mechanisms working only at few peptides but in the future

Apidaecins

- Small, looped, proline-rich peptides composed of 18-20 amino acids,
- many isoforms produced by adult insects, Hymenoptera order,
- consist of two regions, the conserved the general antibacterial capacity, variable - the antibacterial spectrum,
- the most prominent components of the honey bee humoral defense against microbial invasion.

Apidaecins

12

Resources	Isoforms	Peptides sequences	MH+
Honey bee	Hbla	GNNRPVYIPQPRPPHPRI	2109.46
	HbIb	GNNRPVYIPQPRPPHPRL	2109.46
	НЫІ	GNNRPIYIPQPRPPHPRL	2123.48
	HbIII	GNNRPIYISQPRPPHPRL	2099.42 (n.a.)
		***** ** ******	
Bumble bee	Bb + A	ANRPVYIPPPRPPHPRL	1978.36
	Bb – A	-NRPVYIPPPRPPHPRL	1907.28

Cicada killer	Ck P	NRPTYVPPPRPPHPRL	1894.22
	Ck A	NRPTYVPAPRPPHPRL	1869.19

Bald-faced hornet	Ho+	GKPRPQQVP-PRPPHPRL	1958.33
	Ho-	RPQQVP-PRPPHPRL	1675.99 (n.a.)
		***** ******	
Yellow jackets and German wasps	Yj + S	SNKPRPQQVP-PRPPHPRL	2102.46
	Yj – S	-NKPRPQQVP-PRPPHPRL	2015.38
		****** ******	
C. disparis	Cd1+	GKPNRPRPAPIQ-PRPPHPRL	2282.72
	Cd1-	NRPRPAPIQ-PRPPHPRL	2000.38
	Cd2+	GKPNKPRPAPIK-PRPPHPRL	2254.75
	Cd2-	NKPRPAPIK-PRPPHPRL	1972.4 (n.a.)
	Cd3+	GKPSKPRPAPIK-PRPPHPRL	2227.72
	Cd3-	SKPRPAPIK-PRPPHPRL	1945.38
		***** ******	
Conserved sequence of all the isoforms		RP PRPPHPR	

Adopted from Li et al. (2006) Apidaecin-type peptides: Biodiversity, structure–function relationships and mode of action. *Peptides*: 27, 2350-2359.

Properties of Apidaecins

13

- Active against a wide range of Gram-negative bacteria,
- penetrate into cell interior through outer and inner bacteria membrane (elusive),
- target molecule probably bacterial HSP 70 DnaK,
- acting specifically on a bacterial protein and ATPase activity.

AP - Apidacein

LPS – Lipospolyacharide

DM – Docking molecule

IM - Inner membrane

OM – Outer membrane

Our Prospects to the Future

14

- Isolation of peptides from honey bees (maybe next two weeks),
- experiments with its antimicrobial (but also antivirotic) properties,
- acquiring of peptide from geneticaly modified bacteria,
- influence of mutagens on bacteria obtaining of random mutations (maybe with better attributes),
- synthesis of peptides peptide synthesizer (depends on machine),

ullet ... transporters or who knows ? ullet

Conclusion

- Animal toxins contain many type of peptides.
- Most of them exert very interesting properties against different pathogens.
- Bacterial strains have evolved ways to adapt or become resistant to the currently available antibiotics, thus Apidaecins can be used as new candidates of peptide antibiotics lethal mainly to Gram-negative bacteria.
- There exists also potential to destroy viral capsules. Big potential
 in the treatment of HIV, attributed to melittin.

Prof. Ing. René Kizek, Ph.D.

and

Colleagues from

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu

