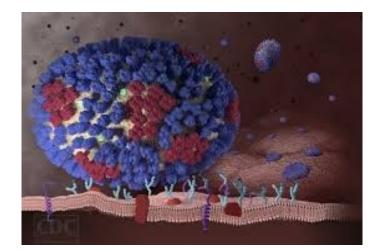


INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Název: Methods for the detection of influenza virus

Školitel: MVDr. Ludmila Krejčová

Datum: 12.12.2013


NanoBioMetalNet

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu

CONTENT

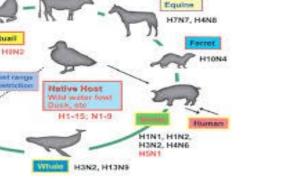
• Basic about influenza

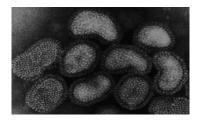
- Standard methods for viruses detection
- PCR and real time PCR as the most commonly used method
- Isolation and identification of influenza nucleic acid
- Isolation and detection of influenza protein (hemagglutinin)

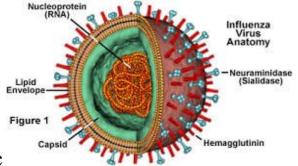
Basic about influneza

- An infectious respiratory and febrile disease
- Waterfowl are natural reservoir, also transmitted to mammals and humans
- Transmition by droplet infection
- Caused by ss (-) RNA viruses, family Orthomyxoviridae
- Influenza A, B and C (differ in host range, structure and virulence) type A is most virulent and cause seasonal epidemic and pandemic type B and C causes epidemics exceptionally

H4,5,7,9,1 N1,2,4,7

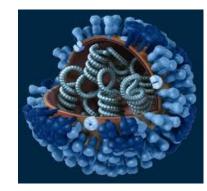

> H1N1, H2N3 H3N2


• type A can be subtyped based on combination of antigens Hemagglutinin (HA) and neuraminidase (NA)


Cattle

• Influenza nucleic acid (RNA) and antigens (HA and NA) are main targets for methods for detection

H7N7, H4N5, H3N2

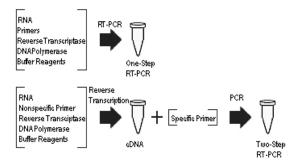

Methods for the influenza virus detection

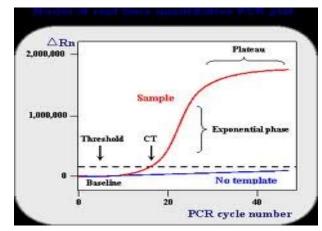
Diret methods – detection of pathogenic agents (or its nucleic acid, antigen....)

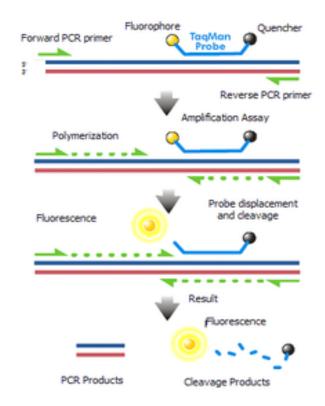
- Cell cultivation, cultivation on embrionated eggs, useing of laboratory animals
- PCR and real time PCR
- Imunological methods (ELISA, FISH, western blot)

Indiret methods – detection of immune response on pathogenic agents (antibody)

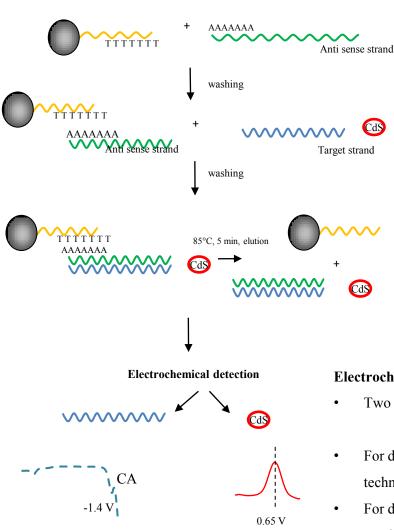
Serological methods (ELISA)


PCR and real time PCR


In RT-PCR, theRNA template is first converted into a complementary DNA (cDNA) using a reverse transcriptase. The cDNA is then used as a template for amplification using PCR. RT-PCR is currently the most commonly used method of RNA detection. The use of RT-PCR for the detection of RNA transcript has revolutionalized the study of gene.

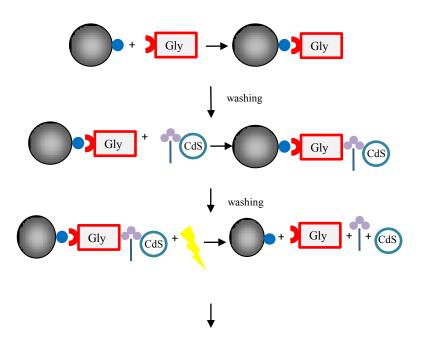

real time PCR is currently the most

Process of detection:


- Isolation of RNA from samples
- Enzyme-transcription into cDNA
- Amplification of specific strins of influenza viruss
- Amplification is monitored in real time

Isolation and identification of influenza nucleic acid

Isolation of target influenza sequence using paramagnetic particles

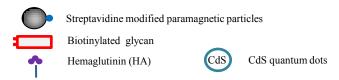

- Binding of adenine modified anti sense strand on tymine modified paramagnetic particles (based complementary of base pairs)
- Washing
- Binding of target strand-CdS complex on anti sense strand (based on complementary of base pairs)
- Washing
- Elution of isolated target sequence-CdS complex

Tymine modified paramagnetic particles
Anti-sense modified by adnenine tail
Target strand
CdS CdS quantum dots

Electrochemical detection of isolated target strand-CdS complex

- Two voltammetry methods were used
- For detection of nucleic acid was used sqare wave voltametry, coupled with adsorptive transfer technique (acetate buffer electrolyte)
- For detection of Cd (from CdS label) was used differential pulse voltammetry coupled with anodic stripping voltammetry (acetate buffer electrolyte)

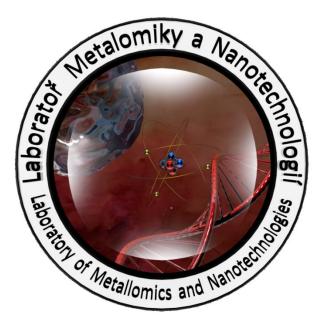
Isolation and identification of influenza hemagglutinine


-1.54 V 0.65 V

Isolation using paramagnetic particles

- Binding of biotinylated glycan on streptavivdin modified paramagnetic particles (based on biotin-streptavidin afinity)
- Washing
- Binding of HA-CdS complex on glycan (based on HA-glycan afinity)
- Washing

٠


Sonication and destroying of isolated glycan-HA-CdS complex

Electrochemical detection

Electrochemical detection of isolated HA-CdS complex

- Two voltammetry methods were used
- For detection of HA was used differential pulse voltametry, coupled with adsorptive transfer technique (with brdicka supporting electrolyte)
- For detection of Cd (from CdS label) was used differential pulse voltammetry coupled with anodic stripping voltammetry (with acetate buffer supporting electrolyte)

Acknowledgements

To colleagues from Laboratory of Metallomics and Nanotechnologies

Financial support from the projects Nano Bio Metal Net CZ.1.07/2.4.00/31.0023, CEITEC CZ.1.05/1.1.00/02.0068, IGA IP16/2013 and PGS03_2012 are gratefully acknowledged.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Thank you for your attention

Reg.č.projektu: CZ.1.07/2.4.00/31.0023

Název projektu: Partnerská síť centra excelentního bionanotechnologického výzkumu