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Research Article

Use of brightness wavelet transformation
for automated analysis of serum
metallothioneins- and zinc-containing
proteins by Western blots to subclassify
childhood solid tumours

In this study, we determined serum levels of metallothioneins (MTs) and zinc in children
with solid tumours (neuroblastoma, Hodgkin lymphoma, medulloblastoma, osteosar-
coma, Ewing sarcoma and nephroblastoma) by differential pulse voltammetry Brdicka
reaction and ELISA. Zn(II) level in patients sera was 40% compared to controls, con-
trariwise, MT level was 4.2 × higher in patients. No significant differences among single
diagnoses were found both for Zn(II) and MT. When determined Zn(II)/MT ratio, in
controls its value was 24.6, but it was 2.6 in patients. After Western-blotting with anti-MT
and anti-Zn chicken antibodies, variable intensities of the bands within the samples were
observed. The brightness curve obtained for each sample both for MT- and Zn blots was
further analysed to produce a list of band positions together with some complementary
information related to the intensity of the observed bands by the optimised algorithm. We
constructed from those profiles decision trees that enable to distinguish different groups
of tumours. The blood samples were heat-treated, in which we supposed mainly MT,
but samples contained other thermostable Zn-containing proteins that were helpful for
identification of embryonal tumours with 88% accuracy and for identification of sarcomas
with 78% accuracy. In MT blots the accuracies were 53 and 45%, respectively. Simulta-
neous analysis of MT and Zn blots did not increased accuracy of identification neither in
embryonal tumours (80%) nor in sarcomas. Those results are promising not only from
diagnostic point of view but particularly in the area of studying of individual MT isoforms
and their aggregates in malignant tumours.
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1 Introduction

Metallothioneins (MTs) are evolutionary highly conserved
ubiquitous metal-binding proteins, which were discovered
by Margoshes and Valee as a cadmium-binding proteins in
horse kidney in 1957 [1]. Later on, their involving in heavy
metal homeostasis, oxidative stress coping, gene expression
and transcription regulation, enzymes activation, apoptosis
and cell proliferation have been found [2, 3]. Till now, four
major isoforms (MT-1 through MT-4) have been identified in
mammals [4, 5]. MTs genes are tightly linked, and at a mini-
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mum they consist of eleven MT-1 genes (MT-1A, -B, -E, -F, -G,
-H, -I, -J, -K, -L and -X) encoding functional or non-functional
RNAs, and one gene for each of the other MTs isoforms (the
MT-2 A gene, MT-3 gene and MT-4 gene) [6]. Concerning
their primary structure, they are rich in cysteine and have no
aromatic amino acids [7]. Current knowledge of MTs is juxta-
posed with our understanding of the pathogenesis of disease
[8]. MT is known to modulate three fundamental processes:
(i) the release of gaseous mediators such as hydroxyl radical
or nitric oxide; (ii) apoptosis; (iii) the binding and exchange
of metals such as zinc and copper on one side, and cadmium
and platinum on the other side. Associations among MTs
and several diseases, including cancer, circulatory and septic
shock, coronary artery disease and Alzheimer’s disease have
been found. Furthermore, strong evidence exists that MTs
modulate the immune system [5].
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Great attention is paid to the study of MTs in tumours
[9–12]. Most studies are focused on the immunohistochem-
ical determination of MTs directly in tumours [12–21], but
also on its determination in serum by various methods such
as Brdicka reaction or ELISA [12,19]. MT can serve as a prog-
nostic marker in central nervous system tumours of child-
hood and adolescence [22, 23], osteosarcoma [24], breast can-
cer [25–27], pancreatic islet cells tumours [28] and tongue
squamous cell carcinoma [29]. MT can also serve as a serum
tumour marker in prostate cancer [30, 31], head and neck tu-
mours [16], childhood solid tumours [19] and melanoma [18].
Expression of MT may help to distinguish between benign
and malignant tumour, as shown at thyroid tumours [32],
prostatic lesions [33], gastrointestinal stromal tumours and
gastric carcinomas [34]. At isoform levels, MT expression in
breast and prostate cancers, renal tumours and papillary thy-
roid cancer was reviewed by Thimoorthy et al., who found
that expression of MT isoforms was down/upregulated dif-
ferentially according to cancer type [35, 36].

Based on the abovementioned fact one may suggest that
there must a mechanism differently influencing somewhat
structure or concentration or both of MTs. In the light of
this, it was found that MTs form aggregates, especially under
higher MTs concentration, which can be observed as a change
of their electrophoretic mobility [30, 37, 38]. In serum of pa-
tients with oncological disease, five times enhanced MT level
[16, 19, 39] and decreased level of antioxidants and increased
GSH/GSSG ratio (marker of oxidative stress) compared to
controls were found [30, 40, 41]. Based on these results, it
can be hypothesised that MTs occur in oligomeric form in
cancer patients, and, moreover, the state is dependent on
heavy metals content and antioxidant status of a patient [42].
Western-blotting is beneficial to be used for analysis of MTs
aggregates in a complex sample like blood serum, unless
other methods, which have been already used, for exam-
ple capillary electrophoresis, gel electrophoresis, mass spec-
troscopy and others [43–45]. The blots can be used for samples
typing, which has been shown as Western-blot fingerprinting
(“westprinting”) by cluster analysis UPGMA (Unweighted
Pair Group Method with Arithmetic Mean) for characteri-
sation of Pseudomonas [46] or Campylobacter strains [47] or
identification of pathogenic protozoans Eimeria in birds [48].

The aim of this study was to automatically analyse
Western-blot profiles of MT and Zn-proteins in serum of
patients with childhood solid tumours and to determine the
difference among single samples and diagnoses by advanced
mathematical approaches.

2 Materials and methods

2.1 Chemicals

Rabbit liver MT (MW 7143 g/mol), containing 5.9% Cd and
0.5% Zn, was purchased from Sigma Aldrich (St. Louis,
USA). Other chemicals used were also purchased from Sigma
Aldrich unless stated otherwise. The stock standard solutions

of MT (1 mg/mL) was prepared with ACS (American Chemi-
cal Society) grade water and stored in the dark at –20�C. Work-
ing standard solutions were prepared daily by dilution of the
stock solutions with ACS water. All other solutions used were
prepared in MilliQwater. Deionised water underwent de-
mineralisation by reverse osmosis using the instrument Aqua
Osmotic 02 (Aqua Osmotic, Tisnov, Czech Republic) and
then subsequently purified using Millipore RG (Millipore,
USA, 18 M�) – MilliQ water. The pH value and conduc-
tivity was measured using inoLab Level 3 (Wissenschaftlich-
Technische Werkstatten, Weilheim, Germany).

2.2 Preparation of anti-Zn and anti-MT antibodies

Chicken anti-zinc antibodies were prepared by HENA,
Prague, Czech Republic. Two hens were immunised by
Zn-keyhole limpet hemocyanin complex according to He
et al. [49]. From the egg yolk the IgY fraction with reactiv-
ity to Zn-keyhole limpet hemocyanin was obtained. The an-
tibodies were stabilised with 0.1% sodium azide in PBS. The
protein concentration was 39.6 mg/mL in immunoglobulin
fraction. Immunoreactivity and specificity of the antibodies
was characterised by the manufacturer and by Krizkova et al.
according to the published paper [20].

Chicken anti-MT antibodies were prepared by HENA.
Two hens were immunised by the commercially available MT
(1 mg of the mixture of horse MT 1 and MT 2, Sigma Aldrich),
which was diluted in water and incubated for seven days at
room temperature in order to polymerize. From the egg yolk,
the IgY fraction with reactivity to MT was obtained. The an-
tibodies in PBS were stabilised with 0.1% sodium azide. The
protein concentration was 54.7 mg/mL in immunoglobulin
fraction. Immunoreactivity and specificity of the antibodies
was characterised by the manufacturer and by Krizkova et al.
according to the published paper [42].

2.3 Human blood serum

Blood samples were obtained from 38 children hospitalised
at Department of Paediatric Haematology and Oncology of
Faculty Hospital Motol with newly diagnosed solid tumours
(medulloblastoma (n = 10), neuroblastoma (n = 12), neuro-
blastoma HR (n = 6), osteosarcoma (n = 12), Ewing sar-
coma (n = 6), Hodgkin lymphoma (n = 5), nephroblastoma
(n = 5); average age 7.3 years). The blood samples were col-
lected before chemo- and radiotherapy. The samples were pri-
marily intended for routine biochemical tests at Department
of Clinical Biochemistry and Pathobiochemistry of Faculty
Hospital Motol. Serum was separated by centrifugation at
4000 × g for 10 min. For further investigations sera unem-
ployed for routine biochemical tests were used. The samples
were stored in −80�C until assayed. Samples (blood) taking
and subsequent processing was approved by Ethic Commit-
tee of Faculty Hospital Motol.
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Concerning control samples, blood samples were ob-
tained from six healthy volunteers (three males, three fe-
males; average age 32.5 years). Plasma was separated by cen-
trifugation at 4000 × g for 10 min in plasma preparation
tubes with heparin (Dialab, Czech Republic). The samples
were stored in −80�C until assayed.

The samples were kept at 99�C in a thermomixer (Eppen-
dorf 5430, Germany) for 15 min with shaking in order to re-
move ballast proteins and peptides, which could influence the
electrochemical response [50]. The denatured homogenates
were centrifuged at 4�C, 15 000 × g for 30 min (Eppendorf
5402).

2.4 Zn(II) and total proteins determination

Total proteins content in the samples was determined accord-
ing to Bradford [51]. Briefly, 10 �L of sample diluted with
0.1 M phosphate buffer pH 7.6 was mixed with 190 �L
of the Bradford reagent (0.117 mM CBB G 250, 50 mL of
96% ethanol, 100 mL of 85% phosphoric acid filled up with
deionised water to total volume of 1 L) in a microplate (Im-
muno 96 MicroWellTM Solid Plates. Absorbance was mea-
sured at 595 nm, 10 �L of the phosphate buffer mixed with
190 �L of Bradford reagent was used as a blank. After 10 min
incubation at room temperature the absorbance was read at
595 nm using a microplate reader (Infinite, TECAN, Japan).
For preparation of calibration curve, bovine serum albumin
was used within the concentration range fro 10 to 500 �g/mL.
The equation was y = 1.037x – 0.009, R2 = 0.9901.

2.5 Differential pulse voltammetry for Zn(II)

determination

Determination of zinc by differential pulse voltammetry were
performed with 797 VA Stand instrument connected to 813
Autosampler (Metrohm, Switzerland), using a standard cell
with three electrodes. Method was adopted from [52, 53].
Briefly, a hanging mercury drop electrode with a drop area
of 0.4 mm2 was the working electrode. An Ag/AgCl/3M KCl
electrode was the reference and platinum electrode was aux-
iliary. For data processing VA Database 2.2 by Metrohm
was employed. The analysed samples were deoxygenated
prior to measurements by purging with argon (99.999%).
Acetate buffer (0.2 M CH3COONa, 0.2 M CH3COOH,
pH 5.0) was used as a supporting electrolyte. The supporting
electrolyte was exchanged after each analysis. The parameters
of the measurement were as follows: initial potential of –1.3 V,
end potential 0.15 V, deoxygenating with argon 90 s, depo-
sition time 120 s, time interval 0.04 s, step potential 4 mV,
modulation amplitude 25 mV, adsorption potential –1.15 V,
volume of injected sample (peristaltic pump): 15 �L, volume
of measurement cell 2 mL (15 �L of sample and 1985 �L ac-
etate buffer) The obtained calibration dependence was linear
within the range from 1 to 2000 �M as it follows y = 1.0186x;
R2 = 0.998, n = 5, R.S.D. = 2.0%.

2.6 Differential pulse voltammetry Brdicka reaction

for determination of MTs

Differential pulse voltammetric measurements were per-
formed with 747 VA Stand instrument connected to
746 VA Trace Analyser and 695 Autosampler (Metrohm),
using a standard cell with three electrodes and cooled sam-
ple holder (4�C) according to previously published papers
[16, 38, 50, 54]. Briefly, there was used hanging mercury drop
electrode as the working electrode. An Ag/AgCl/3M KCl elec-
trode was the reference and glassy carbon electrode was
auxiliary. Brdicka supporting electrolyte containing 1 mM
Co(NH3)6Cl3 and 1 M ammonia buffer (NH3(aq) + NH4Cl,
pH 9.6) was used. The parameters of the measurement were
as follows: initial potential of –0.7 V, end potential of –1.75 V,
modulation time 0.057 s, time interval 0.2 s, step potential
2 mV and modulation amplitude 250 mV. All experiments
were carried out at 4�C employing thermostat Julabo F25
(Labortechnik, Germany). The obtained calibration curve for
MT was as follows y = 2.1713x − 1.9824; R2 = 0.996, n =
5, R.S.D. = 2.4%. For data processing GPES 4.9 supplied by
EcoChemie was employed.

2.7 SDS-PAGE and Western-blotting for proteins

fingerprinting

SDS-PAGE was performed according to Laemmli [1] using a
Mini Protean Tetra apparatus with gel dimension of 8.3 cm ×
7.3 cm (Bio-Rad, USA). First 15% w/v running, then 5% w/v
stacking gel was poured. The gels were prepared from 30%
w/v acrylamide stock solution with 1% w/v bisacrylamide.
The polymerization of the running or stacking gels was car-
ried out at room temperature for 45 min or 30 min, respec-
tively. Prior to analysis the samples were mixed with reduc-
tion (7.5% �-mercaptoethanol) sample buffer in a 2:1 ratio.
The samples were boiled for 2 min, and then 4 �L of the sam-
ple was loaded onto a gel. For determination of the molecular
mass, the protein ladder “Precision plus protein standards”
from Biorad was used. The electrophoresis was run at 150 V
for 1 h (Power Basic, Biorad USA) in Tris-glycine buffer
(0.025 M Trizma-base, 0.19 M glycine and 0.0035 M SDS,
pH 8.3) at room temperature (22�C). Silver staining of the
gels was performed according to Oakley et al. [2].

Western-blotting: after the electrophoretic separation the
proteins were transferred on a PVDF (Biorad, USA) mem-
brane by using of Biometra Fastblot apparatus (Biometra,
Germany). PVDF membranes were activated by soaking in
methanol for 30 s prior to blotting. Further, the membrane
was equilibrated for 5 min in blotting buffer (12.5 mM
Tris-base, 75 mM glycine and 15% v/v methanol). The blot-
ting sandwich was composed from three layers of filter paper
soaked in blotting buffer, membrane, polyacrylamide gel and
additional three layers of soaked filter paper. The blotting was
carried out for 1 h at constant current of 0.9 mA for 1 cm2 of
the membrane. After the transfer, the membrane was blocked
in 1% BSA in PBS (137 mM NaCl, 2.7 mM KCl, 1.4 mM
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NaH2PO4 and 4.3 mM Na2HPO4, pH 7.4) for 30 min. The
incubation either with anti-MT or anti-Zn chicken primary
antibody in dilution of 1:500 in PBS with 0.1% of BSA was
carried out for 12 h at 20�C. Specificities and cross-reactivity
of the used antibodies were checked by blotting with IgY
yolk fractions from hen’s eggs before immunization under
the same conditions. After the three times repeated washing
with PBS containing 0.05% v/v Tween-20 (PBS-T) for 5 min
the membrane was incubated in the presence of secondary
antibody (rabbit anti-chicken labelled with horseradish per-
oxidase, Sigma-Aldrich, in dilution 1:6000) for 1 h at room
temperature. Then, the membrane was washed three times
with PBS-T for 5 min and incubated with chromogenic
substrate (0.4 mg/mL AEC (3-aminoethyl-9-carbazole) in
0.5 M acetate buffer with 0.1% H2O2, pH 5.5), after the ade-
quate development the reaction was stopped by rinsing with
water.

3 Results and discussion

3.1 Determination of Zn and MT

MT and Zn2+ content were determined by voltammetry and
ELISA (Fig. 1). It was found that average Zn2+ level was
6.0 ± 0.8 �M in patients’ sera and 15 ± 2 �M in controls.
Average MT content in patients was 2.3 ± 0.2 �M deter-
mined by differential pulse voltammetry Brdicka reaction and
2.2 ± 0.1 �M determined by ELISA. In controls, the average
MT content was 0.6 ± 0.4 �M determined by differential pulse
voltammetry Brdicka reaction and 0.5 ± 0.3 �M determined
by ELISA. MT and Zn2+ levels for individual diagnosis are
shown in Fig. 1. It clearly follows from the results that while
Zn2+ level in patients sera was approximately 40% compared
to controls, contrariwise, MT was 4.2 × higher in patients

compared to controls. No significant differences among sin-
gle diagnoses were found both for Zn2+ and MT. It is obvious
that Zn2+ content in patients with solid childhood tumours
is decreased [55], which is in well agreement with the previ-
ously published studies, where zinc status has been studied in
Hodgkin’s lymphoma, leukaemia, bone and brain tumours
[40, 41, 56–59]. When determined Zn2+/MT ratio, its value
was 24.6 in controls, but the ratio was 2.6 in patients. This
phenomenon can be associated with the degree of MTs poly-
merization, i.e. change of zinc binding capacity and therefore
change of their functions in patients’ sera can be questioned
[60].

Based on the possible polymerisation of MTs, we in-
vestigated this phenomenon in this study. After blotting
with chicken anti-MT antibodies, six bands with approx-
imate molecular weights 10, 17, 19, 25, 35 and 50 kDa
were observed. The intensity and the presence of the bands
varied within the group. In addition to these bands, addi-
tional bands in variable molecular weights were observed
according to sample origin. These bands correspond to
MTs isoforms and their high-molecular aggregates and
their intensity corresponds to MT concentration in the
sample [42].

After blotting of samples with chicken anti-Zn antibod-
ies, seven main bands with approximate molecular weights
10, 17, 19, 25, 35, 50 and 70 kDa additional bands in variable
molecular weights according to sample origin were observed.
The intensity and presence of the bands varied within the
group. Compared to blots with anti-MT antibody higher back-
ground and thus less detectable signals were observed due to
interaction of the antibody with blocking agent. However,
variable intensities of the bands were determined among in-
dividual samples. These bands correspond to zinc-binding
proteins and the intensity of the band corresponds to their
concentration in the sample.

Figure 1. Average levels of
MT determined by ELISA and
Brdicka reaction and average
levels of Zn2+ for tumour dis-
eases of interest (medulloblas-
toma (n = 10), neuroblastoma
(n = 12), neuroblastoma HR
(n = 6), osteosarcoma (n =
12), Ewing sarcoma (n = 6),
Hodgkin lymphoma (n = 5),
nephroblastoma (n = 5) and
controls (n = 6).
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Figure 2. Stripe (sample No. 117) extracted from membranes immunoblotted with (A) chicken anti-MT or (B) chicken anti-Zn antibody and
their corresponding brightness curves. The horizontal axis scale is nonlinear – it reflects the equation used for estimation of molecular
weight from the distance.

Typical blots stripes of thermally denatured blood sera
from patients with neuroblastoma HR, Hodgkin lymphoma,
medulloblastoma, osteosarcoma, Ewing sarcoma, nephro-
blastoma and neuroblastoma are shown in Fig. 2. After vi-
sual inspection of both MT and zinc-proteins related bands,
the samples exhibit different pattern of bands. At MT blots,
the highest variability was determined within the range from
25 to 50 kDa in bands size. However, it is difficult to distin-
guish the diagnoses visually, especially at nephroblastoma,
osteosarcoma and nephroblastoma, where typical bands were
missing within the range from 25 to 50 kDa. At Zn blots, the
zinc-binding thermostable proteins pattern is not so obvious.
On the other hand, it is evident that the protein profiles are
not uniform for individual diagnoses. The visual processing
of the obtained results clearly showed that there were some
associations between diagnoses and bands profile. However,
robust mathematical approaches were needed for evaluation
of our observations.

3.2 Mathematical processing of the Western

blotting images

The samples from the diagnoses sets were randomly dis-
tributed within the gels in order to prevent affecting of the
mathematical processing results by blotting and electrophore-
sis conditions. In the typical scanned and treated image, there
can be observed numerous bands in the vertical stripes corre-
sponding to different studied samples. Some are clearly visi-
ble but some are difficult to be identified by a naked human
eye. Western blots fingerprints are often difficult to analyse by
common densitometrical software and reproducibility of the
profiles are an uneasy task. Automated bioinformatic process-
ing of gel or membrane images enables to mine more infor-
mation and offers a new tool for proteomic studies making it
comparable with mass spectroscopic fingerprint techniques.
Mass spectroscopic methods are based on combination of

detectors with good resolution and advanced mathematical
methods for treatment of data and for comparing them with
standard database, which needs to be still updated [61, 62].
That is why we have decided to design an algorithm that
would ensure computer processing of the considered image
and provide as its output the brightness curves for each of the
stripes in the image.

The brightness curve can be further analysed to produce
a list of band positions together with some complementary in-
formation related to the intensity of the observed bands. Our
algorithm starts by separation of individual stripes, continues
by generation of a brightness curve for each of the stripes and
finally produces an estimate of the molecular weight for each
of the identified bands. The brightness curve represents noth-
ing more than aggregated information that is already present
in the original image, namely it provides a numeric value
corresponding to the intensity of the band (Fig. 2). Clearly,
the bands of interest are much easier to be identified in the
brightness curves than in the original images because they
coincide with the local maxima of the brightness curve (after
appropriate smoothing) – compare for example the bands in
two lanes of Fig 2. The used algorithmic processing leading
to creation of the brightness curves is described in following
two paragraphs.

These curves are certainly worth of further attention be-
cause their shape seems to carry valuable additional informa-
tion, which remains to be revealed. We have noticed interest-
ing similarities among shapes of the brightness curves corre-
sponding to certain types of biological samples described in
the Section 2.3. Some of them are highlighted below. To sup-
port our claim about information hidden in the shape of the
considered brightness curves we have used features derived
from these graphs as attributes in the classification exper-
iment described in the last paragraph of this section. This
experiment proves that the considered features can help in
distinguishing between samples of certain tumours, namely
embryonal tumours, sarcoma and lymphoma, with signifi-
cant reliability.
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3.2.1 Image segmentation

In the input image, there have to be identified areas of inter-
est (in our particular case these are the vertical stripes). This
is the goal of segmentation which ensures that each stripe is
analysed separately later. When doing so, we can benefit from
strong a priori knowledge we have about electrophoreogram
images, for example orientation of the stripes in the vertical
direction and a relatively large difference in image brightness
values between the areas of interests and the background.
That is why we design a dedicated algorithm instead of ap-
plying any of the traditional general methods used in image
processing (segmentation by luminance, colour or texture,
segmentation using edges). Our algorithm segments the im-
age using digital filtering and adaptive thresholding.

3.2.1.1 Segmentation method based on adaptive

thresholding

Because the areas of interest in image are vertical stripes
of approximately the same width throughout their length,
we can simplify the task of image segmentation by turning
attention to the sequence of numeric values characterizing
properties of the columns in the image matrix. There are
several ways how to provide aggregated information charac-
terising the column, the sum of all values in that column,
the average of all the values, their maximum or their min-
imum. The last approach proved to offer particularly suit-
able value. Because there is a significant difference between
brightness values corresponding to areas of interest and to
the background, the sequence of sums of brightness (or of
brightness minima) contains information on the location of
areas of interest. Under the assumption that the image (when
being shot) is evenly lit, it would be possible to obtain image
segmentation by simple thresholding. Since this assumption
does not apply usually, we do not reach satisfactory segmen-
tation results by this approach. Therefore, it seemed appro-
priate to apply adaptive thresholding: now, the threshold is
somehow modified with respect to the instantaneous values
of the thresholded sequence. Thresholding sequence is the
first smoothed using suitable low-pass filter to suppress noise
and improve success of segmentation. An adaptive threshold
is obtained by filtering the sequence by low-pass filter with
cut-off frequency lower than that used in the smoothing se-
quence. The segmentation is obtained simply by comparing
the smoothed sequence with the adaptive threshold. The seg-
mentation into individual areas of interest (stripes) is than
suggested so that the break points are given by the rising and
falling edges in the segmentation thresholding sequence. The
described process is shown in Fig. 3A, where we can observe
the initial sample sequence of minima characterising indi-
vidual columns, the corresponding smoothed waveform and
its adaptive threshold.

When digital integrator is used as the low-pass filter, this
segmentation method is relatively successful in the case of
good quality images. The low quality images (that are also
present in the treated training set) cannot be reliably seg-

mented in this way. For segmentation of such images we
design an alternative method based on autocorrelation func-
tion as described later.

3.2.1.2 Digital integrator

Integrator is the easiest filter with infinite impulse response,
which has one feedback. It can be represented in block dia-
gram (D1).

In the time domain, the integrator can be described by
differential equation:

a0 · y[n] = b0 · x[n] + a1 · y[n − 1] (1)

Where x[n] is the sequence to be filtered and y [n] is the result
of its digital filtering. The parameter a0 has always value a0

= 1. The transfer of this integrator as a function of complex
variable z is then given by the following equation:

H(z) = b0

a0 − a1 · z−1
(2)

3.2.1.3 Segmentation method using the

autocorrelation function

This alternative method is very similar to the method de-
scribed above. Again we filter the input sequence by two
different low-pass filters. Instead of comparing the outputs
from two low-pass filters as in the case of adaptive filtering,
we work with difference of both sequences now. The differ-
ence of outputs of two different low-pass filters carries the
necessary information for image segmentation, but this se-
quence itself is not suitable for thresholding. Fortunately,
we can rely on the fact that there can be observed periodical
changes from areas of interest to the background and back in
the image. This periodicity can be identified in the difference
sequence, too. Periodicity in sequences can be analysed in var-
ious ways including Fourier analysis, the best known method
used for that purpose, or autocorrelation. Autocorrelation
function is the correlation of the sequence with its shifted im-
age (shift is dented by l) and its unbiased estimate is defined as
follows:

Rxx(l ) = 1

N − 1

N−l−1∑

n=1

x(n)x(n + l ) (3)

While its biased estimate is defined as:

Rxx(l ) = 1

N

N−l−1∑

n=1

x(n)x(n + l ) (4)

Since autocorrelation function is an even function, we
can restrict our attention to the estimates of zero and posi-
tive translations, only (or to zero and negative translations).
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Figure 3. (A) The initial sample sequence of minima characterising individual columns (blue line), the corresponding smoothed waveform
(green line) and its adaptive threshold (red line). (B) Estimates of autocorrelation function for positive translations (blue line) and adaptive
threshold (red line). (C) Brightness waveform of the standard lane with labelled local maxima which correspond to bands. For other
experimental conditions see Section 2.

When applying the autocorrelation function for image seg-
mentation, we find out that the positions of local maxima
correspond to the areas of interest and local minima to the
background in the original image. Adaptive thresholding of
the autocorrelation function is demonstrated in the Fig. 3B.

3.2.2 The brightness waveform corresponding to a

single stripe

As soon as the individual stripes (or columns) are correctly
identified in the original image they have to be further pro-
cessed to read the information they possess. This information
is carried by the pattern of positions where bright horizontal
bands (sections) appear. Now, our attention is turned to the
individual stripes (columns in the image matrix) identified in
the former steps. Individual average brightness waveforms
for the considered stripe are extracted as an average over all
instances in the area of interest (described by the relevant part
of the row in the treated matrix). Using the average brightness
waveforms to represent the band proved useful because aver-
aging suppresses the noise that is omnipresent and its sup-
pression is usually suitable. Processing electrophoreogram
image to suppress noise proved really necessary because the
methods used in the sequel are sensitive to noise. Visual
information in the band is very redundant due to the high
resolution of images. Thanks to that we do not lose informa-
tion when representing entire area of interest with average
waveform.

3.2.2.1 Finding significant local maxima in the

brightness waveforms

The method of searching for local maxima of continuous
smooth function can be based on the properties of the first
derivative of the function. First derivative of function is posi-
tive if the derived function is increasing, and negative value if
the function is decreasing. Local extreme (maximum or min-
imum) is defined as the point where the function changes

from increasing to decreasing or from decreasing to increas-
ing. Local extreme in the first derivative of the function cor-
responds to the zero-crossing. If we want to apply similar
principle for finding local extremes in a sequence of discrete
values, we need to approximate the derivative. Since our stud-
ied sequence corresponds to equidistant measurements, the
first derivative can be suitably approximated by the difference
between two adjacent values, which can be implemented by
digital filtering with differentiator, which is a digital filter with
finite impulse response. This process can be described by the
differential equation:

y[n] = x[n] − [n − 1] (5)

where x [n] is the sequence we want to filter and y [n] is the
result of its digital filtering. Transfer of the differentiator as
a function of complex variable z is given by the equation:

H(z) = z − 1

z
(6)

Finding zero-crossings in the sequence of the first differ-
ence values can be performed by normalizing these values by
assigning constant positive value when the difference value is
greater than or equal to zero and constant negative value for
the difference value is below zero and by repeated calculation
of the first difference.

As the search for local maxima sequence uses the first
difference, which does not suppress any noise (because it acts
as a high-pass filter), we have to remove noise effectively from
the brightness waveforms before this method is applied.

To eliminate noise we use the stationary (non-decimated)
wavelet transform. We are looking for local maxima in the
stationary wavelet approximation of the highest level used in
wavelet decomposition. Position of local maxima in the sta-
tionary wavelet approximation slightly differs from their exact
position in the brightness waveform. To determine the exact
position of the local extremes in the brightness waveform the
position found in the approximation coefficients has to be
recalculated.
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Figure 4. Wavelet transformation as an approximation of the MT5 brightness waveform of (A) anti-MT and (B) anti-Zn blots. For other
experimental conditions, see in Fig. 2

All over the wavelet decomposition suppresses noise
very successfully, there are identified some local maxima in
the result, which do not correspond to bright bands in the
considered image, they are erroneous. To decide whether
the local maximum is significant or false, we use logical fil-
tering by differences between local maximum and two local
minima bordering it. The local maximum is considered as
significant if the difference from two neighbouring minima
is greater than a specified threshold, or difference from one
of the neighbouring minima is greater than the second spec-
ified threshold. These two thresholds allow us to distinguish
solitary local maxima or those that are superimposed on other
significant local maximum. Typical brightness waveform of
the standard stripe with labelled local maxima which corre-
sponds to bands is shown in Fig. 3C. Precise identification
of these positions is a prerequisite for specification of com-
position of the considered samples. The automated method
described briefly in this paragraph seems to produce very
good results but it remains to be verified on some samples
of well-known composition, but this topic will be treated in a
separate paper.

3.2.2.2 Compact representation of brightness

waveform through wavelet transformation

In this paper, we would like to point to the fact that bright-
ness waveforms can play an important role even in classifi-
cation of the considered samples. To support this argument
we will apply the well-known wavelet transformation to the
created brightness waveforms with intention to characterise
these curves in a concise way using relatively low number
of derived aggregated attributes. To do so we have used the
wavelet transformation of the level 5 leading to calculation of
25 derived aggregated attributes that provide efficient descrip-
tion of the considered signal by estimating it by a stepwise
function (all 25 steps have equal length). This approximation

is shown in Figs. 4A and B, for anti-MT and/or anti-Zn blots,
respectively. We will show that the wavelet attributes of the
considered brightness curves allow designing decision trees
that distinguish reasonably well among samples correspond-
ing to various types of tumours. Experiments devoted to de-
sign of these decision trees and their testing are described in
the following section.

3.2.3 How to classify among various types of

tumours using brightness waveform features

Brightness curves of the studied blood samples exhibit inter-
esting similarities (Figs. 3 and 4). This suggests that it might
be feasible to use some features characterising these curves as
a basis for their classification. To support this claim we have
ensured number of experiments during, which decision trees
have been constructed from data describing the considered
brightness curves by the coefficient of wavelet transformation
described in the former paragraph. Due to the used transfor-
mation, each curve is described by 32 derived attributes (or
coefficients) only. Thus, we are working with a compact repre-
sentation where each measurements of any blood sample are
represented by 32 coefficients. Since each blood sample has
been tested by anti-MT and anti-Zn antibodies, each blood
sample is represented by 32 + 32 = 64 coefficients. Our data
consist of 56 different blood samples, each is described by
32 + 32 coefficients and for each there is specified its diag-
nosis. We intend to design a model that would be able to
distinguish among various types of the considered diagnoses
using only information about the brightness waveforms of
the considered sample. Such models can be designed using
methods of machine learning. It is well known that to build a
reliable model these methods need to have sufficient amount
of data representing typical samples. Moreover, there is a
well-known trade-off between complexity of data description,
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Figure 5. Decision trees created from data representing aggregated characteristics of the brightness curves of studied samples. Western
blotting was applied to produce two brightness curves for each sample – one resulted from incubation with anti-MT and the other with
anti Zn chicken primary antibody. Those coefficients appearing in the nodes of the tree with prefix Zn correspond to anti-Zn incubation.
The remaining coefficients correspond to treatment with anti-MT. For other experimental conditions see Section 2.

number of classes into which the data have to be divided and
size of the training data. Certainly, much richer set of blood
samples would be necessary to build models that would be
able to discriminate among all the seven types of considered
solid tumours. That is why we have decided to build sim-
pler models that would provide less detailed characterisation
of the considered tumours (abstracting, e.g. from their pre-
cise localisation as in neuroblastoma): our models distinguish
among embryonal tumours, lymphoma and sarcoma in gen-
eral only. Even this task is very difficult provided that we have
no more than 56 samples in total, each described by 32 +
32 attributes. We have decided to apply the well-known algo-
rithm for decision tree building to design a model of the way
how the diagnosis can be based on the values of coefficients
characterising our data.

The algorithm for building a decision tree model from
the training data applies iteratively a routine for identification
of the most informed attribute to the considered dataset. This
attribute is then used for partitioning the dataset. Further on
significantly smaller dataset is processed and complexity of
the considered task is reduced in this way step by step. Those
attributes that appear in the names of the upper nodes of the
decision tree (close to its root) seem to be of special impor-
tance and the decision tree can be understood as a feature
selection algorithm, too. The software tool Rapid Miner and
its module Decision Tree have been applied.

Classification models have been designed separately in
two experiments:

(i) All samples have been considered and the models have
been designed to classify them into three classes: embry-
onal tumours, lymphoma and sarcoma. Here, there is a
danger of misclassification in case of lymphoma, since
this class is significantly underrepresented in the origi-
nal data consisting of 28 samples of embryonal tumours,
23 samples of sarcoma and 5 samples of lymphoma only.

(ii) The five lymphoma samples have been neglected and the
classification task was studied using only 51 samples that
have to be separated into two classes: embryonal tumours
and sarcoma.

To test the quality of the created models and to com-
pare results of both experiments there was applied ten-fold
cross-validation in both cases. This means that the available
data S corresponding to different brightness waveforms were
divided into ten disjunctive sets S1, . . . , S10 each of which
maintained the same percentage of the considered body tis-
sues as the original set (stratified samples). For i = 1 to 10
the following experiments have been ensured: the decision
tree model has been created from the training data set (S – Si)
and tested on the remaining data, namely on Si. The overall
results of the ten experiments were summarised using a con-
fusion matrix with columns denoted by the type of tumour
as diagnosed by the medical expert and with rows denoted by
the classification suggested by the constructed decision trees.
Consequently, the resulting table denoted as a confusion ma-
trix for the considered experiment depicts all the correctly
classified examples on the diagonal of the matrix while all the
other points represent errors. Moreover, this presentation of
the obtained results makes it possible to identify easily the
most frequent mistakes or confusions appearing in our data,
namely the names of solid tumour type, the miss-classified
examples came from and the predicted class, which does not
seem to be fully reliable.

The obtained results summarised in Fig. 5, and
Table 1 prove that the suggested approach for using the
wavelet coefficients for tumour diagnostics is very promis-
ing. After analysis of the blots there was possible to classify
individual path according to tumour (embryonal tumours,
sarcoma, lymphoma). In Zn blots, the accuracy was 88% for
embryonal tumours and 69% for sarcomas, while we were not
able to classify lymphomas. The accuracy for MT blots was
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Table 1. Results of ten-fold crossvalidation for decision tree
building, Zn–embryonal tumours, sarcoma, lymphoma

Zn – blastoma, sarcoma, lymphoma

True embryonal True True Class
tumours lymphoma sarcoma precision

Pred. blastoma 44 4 7 80.00%
Pred. lymphoma 0 0 4 0.00%
Pred. sarcoma 6 5 24 68.57%
Class recall 88.00% 0.00% 68.57%
Accuracy 71.58 ± 13.77%

Table 2. Results of ten-fold crossvalidation for decision tree
building, MT – embryonal tumours, sarcoma, lymphoma

MT – blastoma, sarcoma, lymphoma

True embryonal True True Class
tumours lymphoma sarcoma precision

Pred. blastoma 21 3 8 65.62%
Pred. lymphoma 2 1 1 25.00%
Pred. sarcoma 9 1 11 52.38%
Class recall 65.62% 20.00% 55.00%
Accuracy 58.33 ± 20.72%

Table 3. Results of ten-fold crossvalidation for decision tree
building, Zn + MT – embryonal tumours, sarcoma,
lymphoma

Zn + MT – blastoma, sarcoma, lymphoma

True embryonal True True Class
tumours lymphoma sarcoma precision

Pred. blastoma 21 1 5 77.78%
Pred. lymphoma 4 1 2 14.29%
Pred. sarcoma 0 3 11 78.57%
Class recall 84.00% 20.00% 61.11%
Accuracy 69.00 ± 22.00%

66% for embryonal tumours, 20% for lymphomas and 55%
for sarcomas (Table 2). When analysed Zn and MT blots both
accuracies increased to 84% for embryonal tumours and was
20% for lymphomas and 61% for sarcomas (Table 3). Because
of low number of lymphomas we tested only classification of
embryonal tumours. In Zn blots, the accuracy was 88% for
embryonal tumours and 78% for sarcomas (Table 4). In MT
blots, the accuracy was 53% for embryonal tumours and 45%
for sarcomas (Table 5). After analysing both blots together
the accuracy was 80% for embryonal tumours and 67% for
sarcomas (Table 6). It is interesting that although we used
heat-treated samples, where the majority representation of
MT is assumed [16,54], there were determined enough other
thermostabile Zn containing proteins in samples. Those pro-
teins served to identify embryonal tumours with accuracy
88% and sarcomas with 78% accuracy, while in MT blots,
the accuracy were only 53% in embryonal tumours and 45%
in sarcomas. Analysis both Zn and MT blots simultaneously
did not increase accuracy of identification neither in embry-

Table 4. Results of ten-fold crossvalidation for decision tree
building, Zn – embryonal tumours, sarcoma

Zn – blastoma, sarcoma

True embryonal True True Class
tumours lymphoma sarcoma precision

Pred. blastoma 23 0 4 85.19%
Pred. lymphoma 0 0 0 0.00%
Pred. sarcoma 3 0 14 82.35%
Class recall 88.46% 0.00% 77.78%
Accuracy 82.33 ± 22.41%

Table 5. Results of ten-fold crossvalidation for decision tree
building, MT – embryonal tumours, sarcoma

MT – blastoma, sarcoma

True embryonal True True Class
tumours lymphoma sarcoma precision

Pred. blastoma 17 0 11 60.71%
Pred. lymphoma 0 0 0 0.00%
Pred. sarcoma 15 0 9 37.50%
Class recall 53.12% 0.00% 45.00%
Accuracy 49.83 ± 25.10%

Table 6. Results of ten-fold crossvalidation for decision tree
building, Zn + MT – embryonal tumours, sarcoma

Zn + MT – blastoma, sarcoma

True embryonal True True Class
tumours lymphoma sarcoma precision

Pred. blastoma 20 0 6 76.92%
Pred. lymphoma 0 0 0 0.00%
Pred. sarcoma 5 0 12 70.59%
Class recall 80.00% 0.00% 66.67%
Accuracy 76.00 ± 23.85%

onal tumours (80%) nor in sarcomas (67%). We do not know
which of thermostabile zinc-containing proteins enable to di-
agnose those tumours. Further biochemical studies will be
necessary to clarify importance those proteins for diagnosis
and pathogenesis of malignant proteins.

4 Concluding remarks

We found differences both in Zn and MT levels in child-
hood solid tumours compared to healthy controls. The re-
sults were subjected bioinformatic processing enabled on a
different pattern of bands to distinguish the groups of em-
bryonal tumours and sarcomas. Those results are promising
not only from diagnostic point of view but particularly in the
area of basic research. Using these data, we can be able to
further study individual MT isoforms and their aggregated
forms in malignant tumours. Important was also possibility
to test bioinformatics processing on real data.
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