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Histone deacetylase inhibitors in cancer therapy. A review
Jan Hrabetaa, Marie Stiborovab, Vojtech Adamc,d, Rene Kizekc,d, Tomas Eckschlagera

Background. Despite recent success toward discovery of more effective anticancer drugs, chemoresistance remains 
a major cause of treatment failure. There is emerging evidence that epigenetics plays a key role in the development 
of the resistance. Epigenetic regulators such as histone acetyltransferases (HATs) and histone deacetylases (HDACs) 
play an important role in gene expression. The latter are found to be commonly linked with many types of cancers and 
influence cancer development. Overall, histone acetylation is being investigated as a therapeutic target because of its 
importance in regulating gene expression. This review summarizes mechanisms of the anticancer effects of histone 
deacetylase (HDAC) inhibitors and the results of clinical studies.
Results. Different HDAC inhibitors induce cancer cell death by different mechanisms that include changes in gene 
expression and alteration of both histone and non-histone proteins. Enhanced histone acetylation in tumors results in 
modification of expression of genes involved in cell signaling. Inhibition of HDACs causes changed expression in 2-10 % 
of genes involved in important biological processes. The results of experiments and clinical studies  demonstrate that 
combination of HDAC inhibitors with some anticancer drugs have synergistic or additive effects.
Conclusions. Even though many biological effects of HDAC inhibitors have been found, most of the mechanisms of 
their action remain unclear. In addition, their use in combination with other drugs and the combination regime need 
to be investigated. The discovery of predictive factors is also necessary. Finally, a key question is whether the pan-HDAC 
inhibitors or the selective inhibitors will be more efficient for different types of cancers. 
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INTRODUCTION

During the last few decades, several approaches have 
been applied in an effort to discover new more effective 
anticancer drugs. As a result, many promising compounds 
have been investigated. However, chemoresistance that 
may arise during chemotherapy is one of the main causes 
of failure of treatment. Epigenetic changes are emerging as 
part cause of the chemoresistence. These are the changes 
in gene expression or cellular phenotype caused by mecha-
nisms other than changes in DNA sequence. They include 
changes in DNA methylation and chromatin remodeling, 
RNA transcripts and their encoded proteins, expression 
of non-coding RNAs, posttranslational changes in chro-
matin and mRNA regulation. Of these, histone acetylation 
and deacetylation have been investigated as therapeutic 
targets because of their importance in regulation of gene 
expression. Changes in histone acetylation influence chro-
matin condensation and these alterations influence gene 
transcription1. The balance between histone transacety-
lases and deacetylases is often damaged in cancer, leading 
to changed expressions of tumor suppressor genes and/
or proto-oncogenes1,2.

Enzymes catalyzing histone acetylation and deacetylation
Modification of histones by acetylation affects tran-

scription by changing the structure of chromatin that 
modulates the accessibility of transcription factors to their 
target DNA and it plays an important role in regulation 
of expression3. Additionally, acetylation and/or deacety-
lation of non-histone proteins modify many important cell 
functions4.

The acetylation state of histones and other proteins is 
maintained by histone acetyltransferase (HAT) and his-
tone deacetylase (HDAC) enzymes. HATs catalyze the 
transfer of an acetyl group from acetyl-CoA to lysine resi-
dues in proteins and HDAC removes it5. Depending on the 
mechanisms of removing the acetyl group, HDACs can be 
divided into two distinct families. The “classical family” 
comprises Zn2+-dependent HDACs, the second family of 
HDACs depends in catalysis on NAD+ and subsequently, 
O-acetyl-ADP-ribose and nicotinamide are formed as a re-
sult of the acetyl transfer6. Furthermore, based on the 
homology to their yeast analogues, HDACs are divided 
into four classes. Class I, located in the nucleus, includes 
HDACs 1, 2, 3 and 8. HDACs 4, 5, 7 and 9 are members 
of class IIa, while isoforms 6 and 10 that are located both 
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in the cytoplasm and nucleus are classified as class IIb of 
HDACs. Class IV, which exhibits features of class I and II, 
includes only HDAC11. NAD+-dependent homologues 1-7 
of the yeast Sir2 proteins (sirtuins) are designed as class 
III of HDACs, and have mono-ADP-ribosyltransferase 
activity. HATs, “functional opponents” of HDACs, are 
divided into Gcn5/PCAF N-acetyltransferases (GNATs) 
and MYST HATs. Although these two groups of HATs are 
the major enzymes catalyzing N-acetyltransferase activity, 
other proteins also exhibit this acetylase activity7.

Histone deacetylases and cancer
HDACs class I and II levels vary in different cancer 

cells. HDAC1 is overexpressed in prostate and gastric 
cancers, where it signalizes poor prognosis, as well as in 
lung, esophageal, colon and breast cancers8-10. High levels 
of HDAC2 have been found in colorectal, cervical and 
gastric cancers11,12. In addition, HDAC3 is overexpressed 
in gastric, prostate and colorectal cancer13, and high ex-
pression of HDAC1 and 2 correlates with reduced patient 
survival in colorectal carcinomas14,15. HDAC6 is highly 
expressed in breast cancer, HDAC8 is over-expressed in 
neuroblastoma cells and its overexpression correlates 
with metastasis and advanced stage of disease with poor 
prognosis. Expression of HDAC11 is increased in rhabdo-
myosarcoma5,16,17. miR-449 that targets HDAC1 was identi-
fied in prostate cancer18 and in hepatocellular carcinoma 
low levels of miR-22, which targets HDAC4,  correlated 
with poor prognosis19. Both diffuse large B-cell lympho-
mas (DLBCL) and peripheral T-cell lymphomas exhibit 
HDAC1, 2 and 6 overexpression20, whereas Hodgkin's 
lymphomas display increased HDAC1, 2 and 3 levels21. 
In Waldenstrom macroglobulinemia, the upregulation of 
miR-9* results in HDAC4 and 5 dowregulation22. 

Class III HDACs play an important role in carcino-
genesis. Some act as antioncogenes while others influence 
tumors by controlling the cell metabolism22. Decreased 
activities of HDACs are associated with suppressed tumor 
cell development and growth23,24. Moreover mutations of 
HDAC4 have been identified in breast cancer samples25 
and mutation of HDAC2 that cause protein truncation 
was found in human epithelial cancer cell lines26.

Histone deacetylase inhibitors
The results from various studies indicate that HDAC 

inhibitors increase the anticancer efficacy of additional 
therapy modalities and they therefore would be very ef-
ficient in the clinic together with other anticancer treat-
ment modalities including ionizing radiation and/or 
chemotherapy. For this reason, investigation of the clini-
cal application of HDAC inhibitors has increased with 
over 490 clinical trials for cancer and a few for other dis-
eases27. Namely, HDAC inhibitors have also be found to 
be effective for treatment of other diseases. Some HDAC 
inhibitors have antimalarial properties and are studied as 
new possible drugs for the treatment of malaria28. There is 
also some evidence that HDAC pan-inhibitors and HDAC 
III inhibitors possess anti-inflammatory effects in models 
of asthma29.

Here, we describe HDAC inhibitors, the mechanisms 
of their actions and we discuss combination therapies 
with anti-tumor drugs. HDAC inhibitors may be both spe-
cific against only some HDACs (HDAC isoform-selective 
inhibitors) or against all types of HDACs (pan-inhibitors). 
They can be classified according to their chemical struc-
ture into four groups: 1) hydroxamic acids; 2) aliphatic 
acids; 2) benzamides; 4) cyclic tetrapeptides1. 

1) Hydroxamic acids trichostatin A (TSA), vorino-
stat (suberoylanilide hydroxamic acid, SAHA) which 
was approved by the FDA as the first HDAC inhibitor 
for the treatment of relapsed and refractory cutaneous 
T-cell lymphoma (CTCL) (ref.30), belinostat (PXD-101) 
and panobinostat (LBH589) are pan-HDAC inhibitors. 

2) The aliphatic acids [valproic acid (VPA), butyric 
acid and phenylbutyric acid] are only weak inhibitors of 
HDAC I and IIa (ref.31). 

3) Benzamides that include entinostat (SNDX-275, 
MS-275) and mocetinostat (MGCD0103) are isoform 
selective inhibitors of HDAC I and mocetinostat inhibits 
also IV HDAC (ref.32). 

4) The cyclic tetrapeptides, inhibitors of class 
I HDACs (romidepsin inhibits also HDAC 4 and 6), are 
cyclic hydroxamic acids containing peptides: romidepsin 
(depsipeptide, FK228, FR901228), apicidin and trapoxi-
nand. Of these, romidepsin that was approved by the FDA 
and the EuMedicines Agency to treat CTCL and periph-
eral T cell lymphomas, is most effective33. It is a prodrug 
which is activated to a metabolite that chelates the zinc 
ions in the active center of the HDAC of class I (ref.34).

MECHANISMS OF HISTONE DEACETYLASE 
INHIBITOR-INDUCED CELL DEATH

Different HDAC inhibitors induce death of cancer 
cells by different mechanisms that include changes in gene 
expressions and alterations of both histone and non-his-
tone proteins. Enhanced histone acetylation in a variety of 
tumors results in modification of expression of the genes 
involved in cell signaling. Inhibition of HDACs causes 
changed expression of approximately 2-10% of genes in-
volved in several biological processes such as cell cycle 
arrest and apoptosis induction35. Many genes contribut-
ing to the regulation of the cell cycle and apoptosis were 
found to be modified by HDAC inhibition36,37. Moreover 
some HDAC inhibitors have antiangiogenic effects38. 
Mechanisms of actions of HDAC inhibitors are summa-
rized in Fig. 1.

Histone deacetylase inhibitors, cell cycle arrest 
and differentiation.

The most important mechanism of cell cycle arrest 
induced by HDAC inhibitors seems to be increased ex-
pression of gene CDKN1A (p21) encoding the p21 pro-
tein that blocks the formation of dimers from cyclins and 
cyclin dependent kinases. This leads to arrest of the cell 
cycle and to induction of cell differentiation39. The expres-
sion of p21 is tightly controlled by the tumor suppres-
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sor protein p53 that interacts with a Sp1 site of the p21 
promoter, competing with HDAC1 which decreases tran-
scription of p21 (ref.40). In cells treated with HDAC in-
hibitors, the HDAC1 protein is released from the Sp1 site, 
and this causes increase in p21 expression. Furthermore, 
HDAC inhibition stabilizes protein p53 by its acetyla-
tion41. Elevated acetylation of histones located close to 
the p21 promoter also facilitates the access of transcrip-
tion factors. HDAC inhibitors can also repress expression 
of cyclins D and A (ref.42). For clinical practice, another 
important feature of HDACi which could find its place in 
cancer therapy, is regulation of cell differentiation through 
activation of ERK. VPA has been shown to enhance DNA 
binding and transactivation activity of the AP-1 transcrip-
tion factor by ERK activation and acts as a potent inducer 
of differentiation of several types of transformed cells. It 
increases expression of c-Jun and c-Jun phosphorylation 
in SH-SY5Y neuroblastoma cells43. The latter feature is 
required to direct cellular differentiation of poorly differ-
entiated PC12 rat pheochromocytoma cells44.

Histone deacetylase inhibitors and apoptosis
HDAC inhibitors induce apoptosis in tumor cells by 

regulation of expression of proapoptotic and antiapoptotic 
genes45. Mechanisms by which different HDAC inhibi-
tors induce apoptosis include activation of both extrinsic 
and intrinsic apoptotic pathways. HDAC inhibitors have 
been demonstrated to influence death receptors and their 
ligands46. HDAC inhibitor-induced apoptosis has also 
been demonstrated to be associated with activation of 

the intrinsic pathway45. It can be concluded that in tumor 
cells exposed to HDAC inhibitors proapoptotic genes in-
volved in the extrinsic and intrinsic apoptotic pathways 
are up-regulated, while expression of antiapoptotic genes 
is reduced12. Moreover, increased reactive oxygen species 
(ROS) levels that induce apoptosis were found in cancer 
cells treated with HDAC inhibitors but not in nonmalig-
nant ones treated by same drugs. Inhibition of caspases 
does not block HDAC inhibitor induced cell death. This 
means that HDAC inhibitors also induce non-caspase 
types of cancer cell death47,48. Two mechanisms respon-
sible for induction of oxidative stress by HDAC inhibitors 
may be damage to mitochondria and modulation of cel-
lular antioxidants49.

HDAC inhibitors can also induce cell death in apopto-
sis resistant cells. One possible mechanism of non-apop-
totic cell death induced by HDAC inhibitors is induction 
of autophagy. For example, FK228, an HDAC class I in-
hibitor and HDAC1 siRNA induce autophagy in HeLa 
cells in vitro50. SAHA caused tumor growth slowdown 
of glioblastoma xenografts in mice in which it induced 
autophagy. This HDAC inhibitor increased formation of 
intracellular acidic vesicle organelles, recruited LC3-II to 
the autophagosomes, potentiated Beclin1 protein levels 
and reduced p62. SAHA triggered autophagy through the 
downregulation of AKT-MTOR signaling. Inhibition of 
SAHA-induced autophagy by chloroquine has synergistic 
effects that further increase apoptosis51.

structural proteins, chaperons, transcription factors. 

Fig. 1. Scheme of mechanisms of HDAC inhibitors action.
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Histone deacetylase inhibitors and cell signaling pathways
An important mechanism of the anticancer effect of 

HDAC inhibitors is regulation of cell differentiation by 
activation of some protein kinases [mitogen-activated pro-
tein kinases (MAPK), c-Jun Nterminal kinase (JNK) and 
p38] that modulate cell growth, differentiation and apop-
tosis. HDAC inhibitors increase expression of c-Jun and 
its phosphorylation in several cancer cells43. VPA and na-
trium butyrate also affect Wnt signaling that is important 
in various malignancies, by phosphorylation of glycogen 
synthase kinase-3β (GSK-3 β) (ref.49,52). HDAC inhibitors 
also induce the expression of some enzymes involved in 
the proteasomal degradation pathway53.

Histone deacetylase inhibitors and angiogenesis 
and cellular stress response pathways

HDAC inhibitors can decrease angiogenesis by down-
regulation of vascular endothelial growth factor (VEGF) 
and endothelial nitric oxide synthase (eNOS) (ref.54). VPA 
has been demonstrated to enhance expression of the anti-
angiogenic proteins thrombospondin-1 and activin A and 
to downregulate proangiogenic basic fibroblast growth 
factor55. We found that VPA and trichostatin A decrease 
formation of the capillary tubes of human vascular endo-
thelial cells but they do not induce apoptosis of those cells 
(unpublished results). In addition, treatment of cells with 
HDAC inhibitors caused degradation of HIF-1α (hypoxia 
inducible factor), a proangiogenic transcription factor56. 

Hypocetylation of the chaperone Hsp90 protects its 
client proteins such as bcr/abl or ErbB2 from degrada-
tion57. In addition, hyperacetylation of Hsp90 induced 
by HDAC inhibitors reduces the chaperone association 
with its cancer-related client proteins, resulting in their 
proteasomal degradation57. 

COMBINATION OF HISTONE DEACETYLASE 
INHIBITORS WITH OTHER THERAPEUTIC 
REGIMENS 

The results from in in vitro and in vivo experiments us-
ing various cancer cells have demonstrated that combina-
tion of HDAC inhibitors with a variety of anticancer drugs 
have synergistic or additive effects58. Chemotherapeutic 
combinations with HDAC inhibitors have also been used 
in clinical trials59. Several types of therapies have been 
investigated in combination with HDAC inhibitors.

1) HDAC inhibitors were combined with other epi-
genetic modifiers. Inhibitors of DNA methyl transferases 
5-azacytidine (azacitidine) and 5-aza-2’-deoxycytidine 
(decitabine) had increased antitumor effects when used 
with HDAC inhibitors60-64. Decitabine and VPA both in-
duced apoptosis and the combination increased their ef-
fects both in vitro and in vivo65,66. Co-treatment of prostate, 
pancreatic tumor, acute myelogenous leukemia (AML) 
AML1/ETO-positive and non small cell lung cancer 
(NSCLC) cells with trichostatin A and decitabine syn-
ergistically induced apoptosis63,64,67,68. In addition, an in-
hibitor of histone demethylases (tranylcypromine) and 

vorinostat showed synergistic enhancement of apoptosis 
in glioblastoma cells45. 

2) Promising results have been reported for combi-
nations of HDAC inhibitors and ROS-generating agents. 
One such agent, adaphostin, increases entinostat and vori-
nostat induced apoptosis in leukemia cells45. In addition 
depletion of GSH, that is a ROS scavenger, increases the 
effects of vorinostat on AML cells69. 

3) Other drugs that have been combined with HDAC 
inhibitors are microtubule stabilizers. VPA increases the 
toxic effects of paclitaxel in anaplastic thyroid carcinoma 
cells due to their interaction with the tubulin β subunit. 
VPA enhances tubulin hyperacetylation that stabilizes 
microtubule structures70. Similar enhancement of apop-
tosis was observed in endometrial carcinoma cells treated 
with trichostatin A and paclitaxel caused by the activa-
tion of the intrinsic mitochondria-dependent pathway. 
Trichostatin A also stabilizes microtubules via α-tubulin 
acetylation both in vitro and in vivo71.

4) Another effective combination of HDAC inhibitors 
is that with proteasome inhibitors. Cancer cell death due 
to a combination of proteasome and HDAC inhibitors is 
caused by induction of oxidative stress, endoplasmic re-
ticulum (ER) stress and stimulations of JNK. Bortezomib, 
marizomib (NPI-0052) and carfilzomib are proteasome 
inhibitors which have been combined with HDAC in-
hibitors. Treatment of multiple myeloma cells with bort-
ezomib made the cells more sensitive to vorinostat and 
sodium butyrate induced apoptosis72. Clinical trials of 
vorinostat in patients suffering from multiple myeloma 
demonstrated an increase in its antitumor effects in com-
bination with bortezomib73,74. Mechanisms of the antican-
cer effects of a combination of proteasome and HDAC 
inhibitors are mitochondrial damage, disruption of ag-
gresome formation, stimulations of JNK and caspases and 
enhancement of oxidative and ER stress72,75. Proteasome 
inhibitor, marizomib in combination with vorinostat or 
entinostat increased apoptosis in several leukemia cells, 
caspase 8 activation and oxidative stress contributed to 
the synergistic effects45. In vitro and in vivo studies with 
diffuse large B cell lymphoma and mantle cell lymphoma 
cells including bortezomib resistant ones showed that 
another proteasome inhibitor, carfilzomib, increased the 
effects of vorinostat76,77.

5) Numerous studies show synergisms or additive 
effects combining the HDAC inhibitors and DNA-
damaging agents such as topoisomerase inhibitors, DNA-
intercalators, inhibitors of DNA synthesis and agents 
covalently modifying DNA (i.e. doxorubicin, epirubicin, 
etoposid, cisplatin, 5-fluorouracil, melphalan, and temo-
zolomide and ionizing radiation in many cancer cell lines)
(ref.78).

CLINICAL STUDIES AND REGISTERED DRUGS

Several HDAC inhibitors of different structural classes 
are under clinical development (see Table 1). These in-
clude the short-chain fatty acids (phenyl butyrate and val-
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proic acid); the hydroxamic acids [vorinostat (Zolinza®, 
SAHA); panobinostat (LBH589); PCI-24781 and beli-
nostat (PXD101)]; the cyclic tetrapeptides [romidepsin 
(Istodax®, FK228); and the benzamides entinostat (MS-
275)]. Two HDAC inhibitors, vorinostat and romidespin, 
have been approved by the US FDA for treating patients 
with progressive, persistent or recurrent cutaneous T-cell 
lymphoma (CTCL) after one or more lines of chemo-
therapy and romidepsin for patients suffering from pe-
ripheral T cell lymphoma who received at least one prior 
therapy79,80. Vorinostat had modest activity as a single-
agent. Its response rate is 10-20% in AML and MDS 
patients. However this HDAC inhibitor, in combination 
with 5-azacitidine, increased response rate by 30%. The 
combination of vorinostat with idarubicin and cytarabine 
had synergistic activity that was maximal when vorinostat 
preceded cytarabine. In a phase II trial, the response rate 
of 85% of the combination was superior to that of idaru-
bicin and cytarabine alone; notably, there were responses 
in all patients with FLT3-ITD mutations81,82. Phase II trials 
using administration of vorinostat in refractory cutaneous 
T-cell lymphoma patients showed an objective response 
in nearly 30% of these patients30,83. HDAC inhibitors also 
appear to be active in AML, lymphomas and myelodys-
plastic syndromes (MDS). Inhibition of HDACs mediates 
the epigenetic gene silencing in common translocations 
associated with certain hematological malignancies such 
as AML/ETO fusion protein84. Phase I study of patients 
with advanced leukemia and MDS treated with vorinostat 
showed clinical benefit in 17% (ref.85). The clinical phase 
II study proved that panobinostat is an active therapeutic 
agent in patients with relapsed/refractory Waldenström 
macroglobulinemia with a response rate of 47% (ref.86).

MGCD0103 (Mocetinostat) was evaluated in a clini-
cal phase II trial for the treatment of patients with refrac-

tory chronic lymphocytic leukemia (CLL). This HDAC 
inhibitor alone showed only limited efficacy. For this rea-
son, mocetinostat in combination with other agents such 
as conventional chemotherapeutic drugs was recommend-
ed87. LBH-589 (Panobinostat) underwent phase I and II 
clinical studies for the treatment of solid and hematologic 
maligancies and phase III clinical trials against CTCL 
and CML. Two phases I clinical trials showed promising 
results using LBH-589 in an oral and intravenous form 
against CTCL (ref.88) and leukemias, respectively89. Both 
studies found increased acetylation of histones in tumor 
cells that was associated with apoptosis. LBH-589 also 
underwent several phase III clinical trials against CTCL 
too and leukemia in its oral form and showed positive 
effect for the treatment of those diseases.

Despite promising results in the treatment of CTCL, 
vorinostat and romidepsin have not been effective in 
studies that involved solid tumors. Clinical trials have 
assessed their efficacy against different solid tumors, e.g. 
neuroendocrine tumors, glioblastoma multiforme, meso-
thelioma, refractory breast, colorectal, NSCL, prostate, 
head and neck, renal cell, ovarian, cervical and thyroid 
cancers. None of the patients included in these trials 
showed at least partial response to treatment and they 
suffered from side effects27. A study that assessed whether 
VPA modulates the efficacy of radiochemotherapy with 
temozolomide in glioblastoma patients showed that com-
bined therapy with VPA was more effective over patients 
treated without HDAC inhibitors. The authors of this 
study reasoned that the improvement of in treatment re-
sults in the arm with VPA was due to the inhibition of 
HDAC (ref.90).

 VPA with doxorubicin appeared to be an effective 
chemotherapy regimen (16% response rate) in patients 
with refractory or recurrent mesothelioma91. Vorinostat 

Table 1. HDAC inhibitors under clinical development.

Chemical structure Name HDAC specifity Study phase

Hydroxamates SAHA (vorinostat) Pan-inhibitor Approved for CTCL, phase III alone 
or in combination

PXD101 (belinostat) Pan-inhibitor Phase II alone or in combination

LBH589 (panobinostat) Classes I and II Phase III alone or in combination

ITF2357 (givinostat) Pan-inhibitor Phase II alone or in combination

4SC-201 (resminostat) Pan-inhibitor Phase II alone or in combination

PCI 24781 (abexinostat) Classes I and II Phase II alone or in combination

Cyclic peptides Depsipeptide/FK228 (romidepsin) Class I Approved for CTCL and PCTL, 
phase III alone or in combination

Benzamides MS-275 (entinostat) Class I Phase II alone or in combination

MGCD0103 (mocetinostat) Class I Phase II alone or in combination

Aliphatic fatty acids Valproic acid Classes I and IIa Phase II alone or in combination
(approved for epilepsy and some 
other nonmalignant disseases)

Butyrate Classes I and IIa Phase II alone or in combination
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enhanced the efficacy of carboplatin and paclitaxel in 
patients with advanced non-small-cell lung cancer92. One 
clinical study showed that the combination of vorinostat 
and tamoxifen exhibited encouraging activity in reversing 
hormone resistance of breast cancer93.

The most common side effects of HDAC inhibitors are 
thrombocytopenia, neutropenia, diarrhea, nausea, vomit-
ing and fatigue. Most toxicities are not class-specific and 
have been observed in all HDAC inhibitors94.

CONCLUSIONS AND FUTURE PERSPECTIVES

It is well known that various HDACs are involved in 
different pathways and functions in the cell. Nevertheless, 
additional studies are necessary to disclose other func-
tions of HDACs and determine their cellular interactions. 
Such studies might result in development of more effi-
cient therapy with HDAC inhibitors that are a promising 
group of anti-cancer drugs utilized either individually or 
in combination with other anti-cancer drugs. Of HDAC 
inhibitors, vorinostat and romidepsin have been approved 
for cutaneous T-cell lymphoma and romidepsin also for 
peripheral T-cell lymphoma. Many other HDAC inhibitors 
are in clinical trial for the treatment of both haematologi-
cal and solid malignancies. Even though many biological 
effects of HDAC inhibitors have been found,  explanations 
remain unclear. In addition, their use in combination with 
other drugs and the schedule of such drug combinations 
need to be investigated in detail. Indeed, recently, we have 
found that VPA increased the cytotoxicity of etoposide 
to neuroblastoma cells in vitro, if etoposide was co-cul-
tivated with VPA but preincubation of these cells with 
VPA decreased the etoposide efficacy95. The discovery 
of predictive factor(s) is also necessary. Further, one of 
the most important questions in this field is whether the 
pan-HDAC inhibitors or the selective inhibitors will be 
more efficient in different types of cancers.
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