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Clinical importance of matrix metalloproteinases
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Abstract: This review gives a brief summary on clinical applications of MMPs and their determination. Prima-
rily, the activity of MMPs in cancer formation, development and metastasis is discussed. Further, survey on
methods including fluorimetric methods, zymographies, Western-blotting, immunocapture assay, enzyme-linked
immunosorbent assay, immunocytochemistry and immunohistochemistry, phage display, multiple-enzyme/mul-
tiple-reagent system, activity profiling, chronopotentiometric stripping analysis and imaging methods for detec-
tion and determination of MMPs follows (Fig. 3, Ref. 100). Full Text in free PDF www.bmj.sk.
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Matrix metalloproteinases (MMPs) were identified in verte-
brates in 1962 by Jerome Gross and Charles M. Lapiere who
both studied the degradation of triple-helical collagen during tad-
pole tail metamorphosis (1). Since the discovery of these pro-
teins, more then thirty thousand papers have been published ac-
cording to the Web of Science on MMPs and have included the
term “metalloproteinase®”” within article titles, keywords and ab-
stracts. Much attention is associated with the extensive number
of MMPs families throughout the prokaryotic and eukaryotic
systems. Their phylogenetic origin is attributed to Bacteroides
fragilis (2). MMPs family members reveal up to 40 % in pri-
mary structural similarity. Approximately 20 types of MMPs have
been identified, which are classified according to the pre-syn-
thetic region on chromosomes and substrate specificities. They
are labelled with numbers ranging from MMP-1 to MMP-28 (3).
They are classified into five sub-groups according to functional-
ity: collagenases, stromelysins, matrilysins, gelatinases, mem-
brane-associated MMPs and MMPs with no group designation.
X-ray crystallography and nuclear magnetic resonance (NMR)
studies have made it possible to determine the structures of many
MMPs (4). Though structural differences exist, all MMPs re-
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Fig. 1. Human MMP-8 (PDB ID: 20Y4) contains two domains
(20Y4_A and 20Y4_F) each bound to two calcium and zinc ions. The
structure is shown with a trace protein backbone without helix and
strand objects in ball and sticks style. Figure prepared using Cn3D
software from National Centre for Biotechnology Information.

quire zinc and calcium ions to support their enzymatic activity
(Fig. 1). The enzyme itself is divided into three domains: N-
terminal propeptide, catalytic domain and C-terminal domain (5).

The N-terminal propeptide contains approximately 80 amino
acids and ensures enzyme latency. The most important functional
amino acid within the N-terminal propeptide is cysteine, which
interacts with catalytic zinc ions through the thiol group and con-
stitutes the cysteine switch (6). In the propeptide, a highly con-
served sequence (Pro-Arg-Gly-Cys-X-Pro-Asp, where X repre-
sents any amino acid) is present. Cleavage of the propeptide ac-
tivates MMP from proMMP (7).

The C-terminal domain (or hemopexin-like domain) is struc-
turally similar to proteins of the hemopexin family. The domain
has a relatively large surface area for protein-protein interac-
tions e.g. cell membrane receptors. It is ellipsoid-shaped with
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Fig. 2. The Human MMP-12 (PDB ID: 20XU). Domain (20XUA)
bounds three calcium ions and two zinc ions. The structure is shown
without helix and strand objects, worms style. Figure prepared us-
ing the program Cn3D of the National Centre for Biotechnology In-
formation.

propeller-like subdomain, where each leaf of the “propeller” is
composed of 4 antiparallel B-sheets and one a-helix. The first
and fourth leave are linked by a disulfide bridge (7). As pub-
lished for collagenase-1, the catalytic and C-terminal domains (7),
are freely attached by a flexible proline-rich peptide linker (hinge).
The length of the hinge is extremely variable, from 16 amino acid
residues in collagenase to 65 amino acid residues in MMP-15.

The catalytic domain consists of five B-sheets, three a-heli-
ces and connecting loops. It is composed of 170 amino acids and
contains zinc-binding motif (His-Glu-His-XX-XX-XX-Gly-His,
where X represents any amino acid) associated with methionine,
which forms a unique structure known as the methionine loop.
The catalytic domain contains two zinc ions and two or three
calcium ions (Fig. 2). The first Zn>" ion present in the active site
directly participates in catalytic processes. The second Zn*" ion
(also called structural) and Ca** ions are approximately 12 nm
far from the Zn?' ion in the catalytic site (8). Calcium ions are
necessary to stabilize the domain structure (9).

There are several differences in the structure and function of
the domains among MMPs. The hemopexin-like domain is charac-
teristic for collagenase and it is necessary for the degradation of
specific amino acid sequences in interstitial collagen. The cata-
lytic domain of MMPs has proteolytic activity (10). Matrilysin
MMPs, however, do not contain this domain. MT-MMPs possess
this catalytic domain. However, deletion of the hemopexin do-
mains in MT1-, MT2-, MT3-, MT5-, and MT6-MMP does not
impair their abilities to activate proMMP2 (11). This transmem-
brane domain contains one hydrophobic chain composed of ap-
proximately 25 amino acids with a purine-like convertase specific
recognition motif (Arg-X-Lys-Arg, where X represents any amino
acid), except MT4-MMP and MT6-MMP, which are connected to
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Fig. 3. A summary of important pathological and physiological pro-
cesses of MMPs.

the cell surface by a glycosylphosphatidylionositol (GPI) trans-
membrane anchor (9, 12-14). Gelatinases contain domains show-
ing structural similarities with matrix proteins, three tandem cop-
ies of the domain with a sequence similarity to fibronectin type 11
(58 aminoacid moieties long) are present in all gelatinases (15).
Matrilysins (MMP-7 and MMP-26) belong to the smallest mem-
bers of MMPs and do not contain the hemopexin-like domain. For
MMP-23 the hydrophobic N-terminal signal anchor is specific (16,
17). MMP-19, MMP-20, MMP-27 and MMP-12 are considered
to be the first members of a new MMPs group. Structures of other
domains of matrilysins are similar to other MMPs, i.e. a signal
sequence, the latent domain, catalytic domain and C-terminal
propeptide-like hemopexin, but lack structures specific for other
groups (18, 19). Some MMPs, such as MT-MMPs and strome-
lysin-3, contain protein convertase specific recognition motifs
(Arg-X-Arg-X-Lys-Arg, where X represents any amino acid) (20).

MMPs overall thriving popularity among scientists is due to
their roles in many physiological and pathological processes (Fig.
3). The best-known physiological role these proteins play is cleav-
ing and rebuilding connective tissues such as collagen and elastin,
which are components of extracellular matrix providing structural
support to the animal cells and also performing various other im-
portant functions. Numerous of matrix and non-matrix proteins
are both potential substrates for MMPs (21). MMPs ability to cleave
and remodel surrounding tissues components effects activities such
as cell migration, differentiation, growth, inflammatory processes,
neovascularization, wound healing, apoptosis, uterine cycle, em-
bryonic development and ovulation (6). MMPs also play a wide
and complex role in angiogenesis. Many types of MMPs are pro-
duced by endothelial cells and have been described to be impor-
tant in the formation of new blood vessels under physiological
conditions (22). MMPs, furthermore, play a role in a number of
pathological processes such as arthritis, Alzheimer’s disease, ath-
erosclerosis, vascular disease, gastritis ulcer disease, central ner-
vous system disease, liver cirrhosis, and pro-angiogenic activities
in malignant tumours (23-25). This review gives a brief summary
on clinical applications of MMPs and their determination.

MMPs and cancer

MMPs and their impact on tumour diseases emerged in the
early nineties, when they were studied in relation to stomach,



colon (26) and prostate cancer (27). Isolating MMPs and study-
ing their enzyme activities were published a year later (28). In
the same year it was found that stromal cells synthesize MMPs
along with neoplastic epithelial cells to degrade the basal mem-
brane, a characteristic sign of invasive tumour proliferation (29).
Thus, the relationship between MMPs and tumours were inten-
sively studied (30). In 1995, MT-MMPs (membrane type) in
colorectal, chest, head and neck cancer was found (31). Since then
the mechanistic process of extracellular matrix degradation medi-
ated by MMPs has been the focus of many investigations for years.
Recent studies have shown the role of MMPs in cancer progres-
sion is much more complex than that derived from their direct
degrading action on extracellular matrix components (32-34).

There is an increasing evidence supporting the participation
of MMPs in the regulation of tumour growth by favouring the
release of cell proliferation factors such as insulin-like growth
factors bound to specific binding proteins (35). MMPs may also
target and activate growth factors whose precursors are anchored
to the cell surface or sequestered in the peritumour extracellular
matrix (36). It was also found that tumours with higher concen-
trations of MMP-11 and MMP-13 have a significantly higher
probability of relapse (37).

MMP activities have also been traditionally associated with
a variety of escaping mechanisms that cancer cells develop to
avoid host immune responses (25, 38, 39). Some MMPs, such as
MMP-9, can suppress the proliferation of T lymphocytes through
IL-2Ra signalling disruption (40). Likewise, MMP-11 decreases
the sensitivity of tumour cells to natural killer cells by generat-
ing a bioactive fragment from o 1-proteinase inhibitor (41). MMPs
can also modulate antitumour immune reactions by efficiently
cleaving several chemokines or regulating their mobilization (42—
44). During tumour proliferation and developing metastases,
MMPs are responsible for tissue reconstruction near proliferat-
ing cells of malignant neoplasm, and participate in tumour growth
in surrounding tissue (32, 45-48).

Determination of MMPs

MMPs can be used as markers for some cancer including
colorectal, thyroid, bladder and breast cancer, neurodegenerative,
immune and cardiovascular diseases (49). Assays for the detec-
tion of MMPs for both clinical and research purposes are sum-
marized in the following reviews in which different methods and
applications are discussed (50-55). Enzymatic, immunochemi-
cal and fluorimetric methods are commonly used techniques in
clinical research. In vivo imaging methods are of particular in-
terest in cancer research and diagnostics (56). Immunochemical
methods precede enzymatic methods, but cannot distinguish be-
tween active MMP and inactive MMP in zymogene form (50).
Fluorimetric methods using fluorescently labelled substrates
show low detection limits but allow to determine MMP activity
quantitatively and to study target MMPs sequences (51). There
are a number of other methods that are subjects of interest such
as phage display, Multiple-Enzyme/Multiple-Reagent Assay
System (MEMRAS) and activity based profiling.

Krizkova S et al. Clinical importance of matrix metalloproteinases

Fluorimetric methods use fluorescently labelled substrates
for detection of various MMPs. Implementation of microplate-
based screening (excluding so-called Real-Time Zymography)
enables to analyse a large number of samples. The availability
of various fluorescent probes including near-infrared fluorescent
probes (57-59) makes it possible to simultaneously detect and
quantify several different types of MMPs.

Zymography and all its modifications are one of the few
simple and quantifiable approaches for directly determining and
detecting spatial distribution of MMPs activity in both active
and inactive states (zymogene) (60). Gelatine zymography was
used to identify overexpressed MMP-2 and MMP-9, during the
development of glioma in rat nervous system (61). MMP-§, which
is found in human saliva, was studied as a potential marker for
diagnosis and monitoring of periodontitis (62). Sodium dodecyl
sulfate polyacrylamide gel electrophoresis zymography was also
utilized for determining gelatinase B (MMP-9) activity in serum
of gastric cancer patients (63). Besides gelatine, casein (64) and
collagen (65) zymography can be also used for MMPs charac-
terization. In situ zymography was developed for localizing MMP
activity in tissue slices or cells. This method is successful in de-
tecting and localizing MMP-2, -7, -9 in tissues of different ori-
gins (66, 67). Contrary to in situ zymography, in vivo zymography
was developed to study MMPs activity at the level of the whole
organism. This method was utilized for studying the effects of
Prinomastat, a synthetic hydroxamic acid derivative with poten-
tial antineoplastic activity able to inhibit MMPs activity, on MMP
activity (68). Reverse zymography is used to analyze the activi-
ties of tissue inhibitors of metalloproteinases (TIMPs) in com-
plex biological samples. Four homologous TIMPs (TIMP-1,
TIMP-2, TIMP-3 and TIMP-4) are major endogenous tissue regu-
lators of MMPs with molecular weights ranging from 21 to 30
kDa and have been indentified using this method (69, 70). The
experimental setup and conditions were well described by Oliver
et al (71). The most recently developed methods in the zymo-
graphies are real-time zymography and reverse real-time zymo-
graphy (72).

Western-blotting is also used for determination of MMPs both
for clinical (73) and research (74—77) purposes. Immunocapture
assay is based on the use of specific antibodies against MMPs
and their ability of 4-aminophenylmercuric acetate to activate
proteolytic enzymes. This method was developed to detect MMP-
2 (78) and MMP-9 (79). Enzyme-linked immunosorbent assay
(ELISA) protocols have been optimized to detect MMPs, pro-
MMPs, TIMPs and MMPs-TIMPs complexes. ELISA was used
to study the mechanism of MMP-9 action during skin inflamma-
tion (80), MMP expression in ischemic heart disease (81) and
the degradation of extracellular matrix of bone in osteoporosis
by osteoprotegerin and MMP-2 (82). Determination of MMP ex-
pression using immunohistochemistry has been demonstrated for
several types of tumours including melanoma, breast and pros-
tate carcinoma (75, 83-86). Studies confirmed that the overex-
pression of certain MMPs increased the invasion of carcinoma
cells (85). Immunocytochemistry was also used to detect MMPs
expression in acute myeloid leukaemia cell (87), glioma (88),
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colorectal cancer (89), ovarian cancer (89) and in a number of
cell lines derived from different cancers (90,91).

Monovalent and polyvalent phage displays based on M13
bacteriophages and filamentous phage (92,93) belong to other
methods used in MMPs studies and are commonly for investi-
gating substrate specificity of MMPs and their inhibitors (94,95).
The requirement for selectivity and absolute substrate specific-
ity may be compromised using a multiple-enzyme/multiple-re-
agent system (50, 51, 96). For MMP activity profiling, Activity-
Based Proteomic Probes (97) and others (98) are used. Chrono-
potentiometric stripping analysis was also successfully applied
to detect MMP-9 and to study its interactions with collagen (99).

Utilizing MMPs as targets for in vivo imaging is a relatively
young field and much has been done over the past decade to
develop probes for MMPs. MMPs imaging has been limited to
optical imaging method (OIM), positron emission tomography
(PET), single photon emission computed tomography (SPECT),
and magnetic resonance imaging (MRI) (56). Imaging of MMPs
in cancer has many potential applications (100). It takes advan-
tage of the catalytic nature of proteinases as a means to enhance
the sensitivity of screening methods for early cancer detection
(56, 57).
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