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Abstract The mustard family – Brassicaceae – is well known as family of plants,

metallophytes, which are able to accumulate wide range of heavy metals and

metalloids, especially zinc and cadmium, but also nickel, thallium, chromium

and selenium. Ecological importance of this process consists partially in plants

themselves to survive negative environmental conditions. There are two basic

different strategies, how to survive these conditions – accumulation of heavy metals

in plants tissues with different intensity in individual cell types, but also organs,

which is partially given by chemical composition of cell walls, and ability to

synthesize special defensive – detoxification compounds rich on thiol groups –

glutathione and phytochelatins, which are able to bind heavy metals and transport

them to the “secure” cell compartment – vacuole. The second principle is based on

ability to exclude heavy metals. Role of secondary metabolites rich on sulphur in

detoxification of heavy metals is still discussed with unclear conclusions. Members

of Brassicaceae family, especially genera Thlaspi and Brassica, are well-known

hyperaccumulators of heavy metals with possible utilization in phytoremediation

technologies. In this review chapter, mechanisms of cadmium uptake and transport

and its deposition in various plant cells and tissues are discussed with respect with
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possible utilization in phytoremediation. In addition, role of special sulphur

metabolites, which are typical for plants of Brassicaceae family – glucosinolates –

in detoxification of heavy metals is discussed.

Keywords Brassicaceae • Cadmium • Glucosinolates • Metallophytes

Abbreviations

ABC ATP-binding cassette transporter

APS Adenosine 50-phosphosulphate
ATP Adenosine triphosphate

BSO Buthionine sulphoximine

EDTA Ethylenediaminetetraacetic acid

GCS g-Glutamyl cystein synthetase

g-GC g-Glutamyl cystein

GSH Glutathione reduced

GSSG Glutathione oxidized

MT Metallothionein

NTA Nitrilotriacetic acid

OASTL O-acetylserine(thiol)lyase
PC Phytochelatins

PCS Phytochelatin synthase

ROS Reactive oxygen species

3.1 Family Brassicaceae – Its Characterization and Specificity

The mustard family – Brassicaceae (syn. Cruciferae) – is together with next 15

families classified in order Brassicales. Other important families are Capparaceae,
which is sometimes included in Brassicaceae as subfamily Capparoideae,
Tropaeolaceae and Caricaceae, which is well known for edible fruits – papaya –

with interesting pharmacological properties (Breithaupt et al. 2003; Nayak et al.

2007; Okeniyi et al. 2007; Amazu et al. 2009; Abdullah et al. 2011). Brassicaceae
(mustard family) consists of usually hermaphroditic herbs, sometimes shrubs, with

simple lobbed or divided, spiral, exstipulate leaves (Fig. 3.1). Flowers are arranged

in inflorescence represented usually by a raceme. Flowers are bisexual, usually

actinomorphic, perianth is dichlamydeous, cruciate (cross-shaped). Androecium

consists of six stamens (two outer are shorter than four inner), Gynoecium is

syncarpous, consisting of two carpels. The fruit is a silique or silicle (Ehrendorfer

and Neuffer 2006). Classification of Brassicaceae family (338 genera with 3,709

species) is very complicated, still under the discussion, see Table 3.1 (Crespo et al.

2000; Marhold et al. 2004; Johnston et al. 2005; Bremer et al. 2009; Haston et al.
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2009; Huang et al. 2010; Qiu et al. 2010; Al-Shehbaz et al. 2006; Bailey et al. 2006;

Koch and Mummenhoff 2006; German et al. 2009; Endress 2011; Ge et al. 2011).

Family has a worldwide distribution. There are many species of economical value,

for example vegetable plants, plants used for obtaining of dyes, oil, etc. There are also

many ornamental plants. The best known member of family is Arabidopsis thaliana,
plant noted as a model for molecular biology. The Brassicaceae contains high

number of species that are able of hyperaccumulation of heavy metals, especially

nickel (genera Thlaspi and Alyssum), cadmium and zinc (Thlaspi caerulescens,
Thlaspi praecox, Thlaspi goesingense and Arabidopsis halleri). About 25% of all

known hyperaccumulators are members of this family (Rascio and Navari-Izzo 2011;

Marques et al. 2004; Doran and Nedelkoska 1999).

Fig. 3.1 The most important members – hyperaccumulators – of the Brassicaceae. (1) Arabidopsis
halleri, (2) Arabidopsis thaliana, (3) Brassica juncea, (4) Thlaspi caerulescens, (5) Thlaspi praecox

Table 3.1 Taxonomic

classification of Brassicaceae
Phenetic classificationa Cladistic classificationb

Kingdom: Plantae Clade: angiosperms

Phyllum: Magnoliophyta Clade: eudicots

Class: Magnoliopsida Clade: core eudicots

Subclass: Dilleniidae Clade: rosids

Superorder: Capparaneae Clade: malvids

Order: Capparales Order: Brassicales
aIn accordance with Armen Takhtajan classification system
bAPGIII classification (Bremer et al. 2009)
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3.2 Cadmium as an Important Contaminant

of Living Environment

Cadmium is soft, bluish-white metal that is chemically similar to zinc and mercury.

It occurs as a minor component in zinc ores, no cadmium-containing ores are

known. There is only one exception – greenockite (CdS) is closely associated

with zinc ore sphalerite (ZnbS) (Criscuolo and Oconnor 1950; Schwartz 2000).

Cadmium has many industrial applications. It is used in batteries, in electroplating,

as a barrier to control nuclear fission, for manufacturing of pigments, as stabilizers

of plastics, etc. Cadmium is in laboratories used for preparation of cadmium-

selenide quantum dots, which emit luminescence after excitation (Beri et al. 2011;

Fortes et al. 2011; Harris et al. 2011; Kumar and Biradar 2011). Cadmium has no

biological role in the living organisms. However, marine diatoms (Thalassiosira
weissflogii) contain cadmium-dependent enzyme carbonic anhydrase CDCA1,

enzyme that catalyses the reversible hydration of carbon dioxide (Cullen et al.

1999; Lane and Morel 2000; Park et al. 2007, 2008). Cadmium performs the same

function as zinc in this enzyme. It seems that cadmium is involved in function of this

enzyme instead zinc ions, which may be replaced by cadmium ions (Xu et al. 2007;

Strmecki et al. 2010). Cadmium is one of the most important contaminants of the

environment. The steel industry and waste incineration followed by volcanic action

and zinc production are estimated to account the largest emissions of atmospheric

cadmium (Bleil and Albers 1964; Boutron et al. 1993; Milacic et al. 1995; Karar et al.

2006; Ostrowska 2008). The main source of soil and water cadmium contamination

are especially fertilizers (phosphate fertilizers), but also pesticides, fungicides, and

sewage (Mirlean and Roisenberg 2006; Chen et al. 2007; Zarkovic and Blagojevic

2007; Zhao and Masaihiko 2007; Yildiz et al. 2008; Hadlich and Ucha 2010;

McGrath and Tunney 2010). Contamination of soil and water by cadmium is

connected with its uptake by plants – crops and vegetables – cultivated for human

consumption (Jafarnejadi et al. 2011; Khodaverdiloo et al. 2011; Moustakas et al.

2011; Romkens et al. 2011). Smoking represents one of the most important sources of

humans’ exposure to cadmium (Satarug and Moore 2004; Massadeh et al. 2010;

Takeuchi et al. 2010; Lin et al. 2011). Numerous studies are focused on the formation

of organic cadmium compounds by organisms, which are more toxic in comparison

with inorganic forms, especially dimethyl derivatives (Yannai and Berdicevsky

1995). Toxicity of cadmium is known for many years. Chronic prolonged oral

cadmium indigestion is known in Japan as Itai-Itai disease. Human toxic exposure

causes damage of kidneys based on kidney tubular damage. Cadmium can also

damage bones via direct effect on bone tissue and indirect effect associated with

kidney dysfunction (Nishijo et al. 1996; Kasuya 2000; Ogawa et al. 2004; Inaba et al.

2005, 2006; Kobayashi et al. 2009). Just itai-itai disease is connected with damage of

bones and is characterized by multiple fractures of the long bones in the skeleton

(Wang et al. 1994). Carcinogenicity of cadmium is widely discussed (Barrett 2009;

Chen et al. 2009; Strumylaite et al. 2009, 2010; Absalon and Slesak 2010; Gallagher

et al. 2010; Julin et al. 2010; Talaat et al. 2010). It has been proposed as a prostate and
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renal carcinogen, however, available data are still controversial (Kolonel 1976;

Il’yasova and Schwartz 2005). Generation of reactive oxygen species, interactions

with proteins, and induction of apoptosis by cadmium ions have been described in

many in vitro studies. Toxicity of cadmium on plants includes inhibition of many

enzymes involving in disruption of physiological processes including photosynthesis

and growth alterations (Chaffei-Haouari et al. 2009; Hasan et al. 2009; Lopez-Millan

et al. 2009; Rodriguez-Serrano et al. 2009; Cherif et al. 2011).

3.3 General Aspects of Cadmium Uptake, Translocation

and Accumulation in the Brassicaceae

Family Brassicaceae contains some members, in which metabolism of heavy

metals is intensely investigated. Arabidopsis thaliana represents the most important

member of family and model plant in molecular biology. Cadmium is rapidly

absorbed, translocated and accumulated in the aerial parts of many plants (Fig. 3.2).

Tolerance of heavy metals is closely connected to regulation of sulphur uptake.

Sulphate transporters are proteins involved in sulphate transport across a membrane.

Two classes of sulphate transporters have been established – low -affinity and

high-affinity. They differ not only in condition, under they work (sulphur-replete/

sulphur/deficient conditions) and in selectivity. Some of them are responsible for

uptake of not only sulphate, but also chemically similar, but toxic analogues, such as

selenate. High-affinity sulphate transporters are the best known and characterized

sulphate transporters. They have been identified especially inmodel plantArabidopsis
thaliana with tissue specificity (Hawkesford 2000, 2003; Buchner et al. 2004;

Maruyama-Nakashita et al. 2004; Kumar et al. 2011). Recent works describe newly

discovered sulphate transporters in different plants. For example, low-affinity sulphate

transporter BnSultr2;2 together with high-affinity sulphate transporter BnSultr1;1 has

been identified in Brassica napus. Increased tolerance to cadmium ions based

on the efficient sulphate uptake and assimilation has been identified (Sun et al.

2007). Some genes involved in cadmium uptake have been identified. BjCdR15

expression was detected mainly in the epidermis and vascular system of cadmium-

treated Brassica juncea plants (Farinati et al. 2010). Further transport of cadmium

(and next metal ions) into aerial parts is significantly affected by: (i) interactions with

cell walls, (ii) chelation by thiols, (iii) compartmentation into vacuoles (Nocito:

Cadmium retention). Transport of cadmium ions is via cells (across cell membranes)

is closely connected with transporters (Fig. 3.2). In addition, a plenty of transporters

associated with transport of next heavy metals (zinc, lead, arsenic, etc.) has been

described (Song et al. 2010). Cadmium is usually compartmented in vacuoles.

However, interaction and deposition in cell walls have been described (Basic et al.

2006). These findings are in agreement with next published data (Ni and Wei

2003). Cadmium accumulators Arabidopsis halleri, Arabidopsis thaliana, Thlaspi
caerulescens, Thlaspi praecox and Brassica juncea are intensely studied due to

their abilities to accumulate cadmium ions. Individual questions are discussed in

independent chapters.
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3.4 Cadmium Uptake, Translocation and Deposition

in Arabidopsis thaliana

Arabidopsis thaliana tolerates cadmium concentration of 1 mM in substrate

(cultivation medium) without visible signs of the toxicity. However, higher

concentrations (more than 5 mM) leads to the visible morphological changes including

shortening the elongation zone of roots, premature xylogenesis, changes in rhizines

formation and their premature elimination, and changes in formation of lateral roots.

Changes in root system are closely connected with reduction of aerial parts growth

as well as total biomass (Polec-Pawlak et al. 2005; Semane et al. 2007; Isaure et al.

2006; Van Belleghem et al. 2007). However, there are significant differences

between individual studied members of the Brassicaceae as well as between

Fig. 3.2 Molecular mechanisms proposed to be involved in transition metal accumulation by

plants. (a) Metal ions are mobilized by secretion of chelators and by acidification of the rhizo-

sphere. (b) Uptake of hydrated metal ions or metal-chelate complexes is mediated by various

uptake systems residing in the plasma membrane. Inside the cell, metals are chelated and excess

metal is sequestered by transport into the vacuole. (c) From the roots, transition metals are

transported to the shoot via the xylem. Presumably, the larger portion reaches the xylem via the

root symplast. Apoplastic passage might occur at the root tip. Inside the xylem, metals are present

as hydrated ions or as metal-chelate complexes. (d) After reaching the apoplast of the leaf, metals are

differentially captured by different leaf cell types and move cell-to-cell through plasmodesmata.

Storage appears to occur preferentially in trichomes. (e) Uptake into the leaf cells again is catalysed

by various transporters [not depicted in (f)]. Intracellular distribution of essential transition

metals (¼ trafficking) is mediated by specific metallochaperones and transporters localized in

endomembranes (please note that these processes function in every cell). Abbreviations and

symbols: CW cell wall, M metal, filled circles chelators, filled ovals transporters, bean-shaped
structures metallochaperones (Modified according to Clemens et al. 2002)
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individual ecotypes. Especially reduction of biomass production under Cd supplemen-

tation represents one of the most important restriction of their usage in

phytoremediation technologies (Kupper et al. 2000; Bert et al. 2002; Craciun et al.

2006; Zhao et al. 2006).

Cadmium exposure induces expression of about 80–100 genes, which encode

especially proteinkinases, transcriptional factors, calmodulin-associated proteins,

chaperones, and protective compounds, such as thiols and antioxidant enzymes,

such as catalases, ascorbate peroxidases, superoxide dismutases, which are closely

connected with cadmium detoxification and elimination of reactive oxygen species

(Suzuki et al. 2001; Semane et al. 2007).

Arabidopsis thaliana is cadmium excluder. Roots of experimental plants can

contain up to 89% of cadmium in dependence on experimental conditions.

Only a minority of cadmium is transported into aerial parts – shoots (Polec-Pawlak

et al. 2005; Isaure et al. 2006; Van Belleghem et al. 2007). Similar results have been

obtained in related species – Arabidopsis halleri. In this species, roots represent

the main organs of cadmium accumulation in hyperaccumulating ecotypes

(Craciun et al. 2006). This fact is connected with the binding of cadmium ions

into cell walls, especially in the lower concentrations (up to 1 mM). The negatively

charged carboxyl group of the cell walls provides sites for cation exchange leading

to the accumulation of positively charged divalent or polyvalent cations.

Experimental conditions play crucial point in these experiments. Hydroponically

cultivated Thlaspi coerulescens demonstrate the highest cadmium content in roots,

however, in soil cultivated plants has only 20% of cadmium in roots, rest of

cadmium ions is transported into aerial parts (Perronnet et al. 2003; Roosens

et al. 2003). Precipitation of cadmium ions especially with phosphorus under

formation of insoluble compounds has been demonstrated. Cadmium ions at

concentration about 5 mM are transported into cortex, where form granular deposits

in cell walls and intercellular spaces in Arabidopsis thaliana. Granular deposits in
the cytoplasm are well evident at high concentrations (about 50 mM and more).

Deposition of cadmium in cell walls and intercellular spaces is connected with

disruption of water transport within roots. Casparian strips present in endodermis

contain significantly higher amount of cadmium compared to cell walls of other

cells. In addition, granular deposits as a result of cadmium treatment are well evident

also in vacuoles. Radial transport of cadmium ions is connected with formation of

granular deposits in pericycle and xylem. Higher cadmium content was detected in

passage cells, especially in the form of cytoplasmic granular deposits.

In A. thaliana, cadmium is transported from roots in the complexes with

phytochelatins. On the other hand, transport of cadmium in A. thaliana is bidirec-
tional (Gong et al. 2003; Isaure et al. 2006). High content of cadmium in phloem,

respectively in cytoplasm of sieve elements and companion cells, is a result of

translocation of cadmium from aerial parts – shoots (Van Belleghem et al. 2007).

Xylem sap of A. hallerii contains cadmium ions in the free form, or in the

complexes with citrate (Ueno et al. 2008). In the aerial plant parts, the highest

content of cadmium has been found in trichomes in A. thaliana. This fact

is probably connected with the protection of photosynthetically active tissues –

leave mesophyll – against toxic effect of cadmium ions. In comparison with

trichomes, epidermis and leaf mesophyll contain undetectable cadmium amount.
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Only minimal cadmium levels have been detected in vascular bundles of leaves,

especially in vessel elements (Isaure et al. 2006; Van Belleghem et al. 2007).

Different situation has been observed in A. halleri, whose populations in France

may be considered as hyperaccumulators. The highest cadmium concentration

was detected in the bases of trichomes (especially in the oxygen compounds

as oxides or in the form of citrate) (Kupper et al. 2000). Nevertheless, treatment

of experimental plants by high cadmium concentrations leads to its transport

into leaf mesophyll vacuoles. Due to fact, that epidermal cells are only weakly

vacuolated, they contain only minimal Cd concentrations (Kupper et al. 2000).

Different mechanism of cadmium accumulation is presented in T. coerulescens,
species lacking trichomes, which are usual place of this process.The highest cadmium

content was detected in the big epidermal cells (Cosio et al. 2005; Leitenmaier and

Kupper 2011) followed by leaf mesophyll (Ma et al. 2005). Thirty-five percent of

cadmium ions is bound in cell walls of epidermal/mesophyll cells. The youngest

leaves demonstrate the highest accumulation capabilities (Perronnet et al. 2003).

Colenchyma cells, which serve as mechanical tissue, contain the highest cadmium

content in T. praecox leaves (Vogel-Mikus et al. 2008).

Whereas cadmium in roots of experimental A. thaliana plants predominates in

insoluble form (54% versus 46% of soluble form) due to formation of precipitates

with phosphates under formation of Cd3(PO4)2 (rhizodermis, apoplast of cortical

cells), about 58% of total cadmium in shoots is in water-soluble form

(Polec-Pawlak et al. 2005). Phosphate precipitates represent the main Cd form

also in A. halleri. On the other hand, there are significant differences between

individual members of the Brassicaceae (Ma et al. 2005). There are also

differences between tissues of various onthogenetical ages (Perronnet et al.

2003). However, there is one fundamental question – isn’t formation of these

precipitates a result of hydroponic cultivation of experimental plants (Zhao et al.

2006)? Granular deposits in symplast are formed by cadmium coordinated to

sulphur, which suppose reaction between cadmium ions and sulphur-containing

molecules, especially Cd-phytochelatins, Cd-phytochelatins-sulphide and/or

Cd-sulphide (Isaure et al. 2006; Van Belleghem et al. 2007). High-molecular

ligands (cell walls with carboxyl groups) are responsible for cadmium depositions

in shoots (Polec-Pawlak et al. 2005). 75% of total cadmium is in trichomes bound

with O and N, probably in pectins and cuticle of cell wall, only 25% of cadmium

is bound with sulphur, probably with GSH. This fact corresponds to increased

levels of GSH in trichomes (Isaure et al. 2006).

3.5 Biochemical and Molecular Aspects of Cadmium

in Arabidopsis thaliana

Exposition of A. thaliana to cadmium ions leads to the increased expression of

the genes for O-acetylserine(thiol)lyase (OASTL), g-glutamyl cysteine synthetase

(GCS) and glutathione synthetase (GS). All these findings support importance of

78 P. Babula et al.



sulphur compounds in cadmium detoxification (Lee et al. 2003). Expressions of

GS and GCS are increased in the first step after cadmium exposition. Product of

GCS-g-glutamylcysteine (gGC) – represents substrate for GSH biosynthesis. These

connections have been verified using buthionine sulphoximine (BSO). Application

of this inhibitor of GCS biosynthesis leads to the enhancement of sensitivity of

Arabidopsis thaliana plants to cadmium ions (Wojcik and Tukiendorf 2011).

Similar results were obtained using cad2-1 mutant with altered genes for GCS,

which produce only 30–45% of GCS in comparison with wild types (Cobbett et al.

1998). External application of GSH does not lead to the increased tolerance to

cadmium, but it is toxic also for plants without Cd exposition. This fact indicates

the role of GSH in biosynthesis of phytochelatins. Application of GSH may lead to

the disruption of oxidation reduction balance in cells due to reduction of GSSG,

which is formed from GSH in cultivation medium (Wojcik and Tukiendorf 2011).

Role of phytochelatins (PCs) has been investigated using Arabidopsis thaliana
cad1-3 mutant with mutation in AtPCS1 gene for phytochelatin synthase. Expres-

sion of TaPCS1 from Triticum aestivum in roots of cad1-3 A. thaliana mutants led

to the reduction of Cd accumulation in roots and enhancement of Cd transport from

roots into shoots (Gong et al. 2003). Expression of AtPCS1 is twofold increased

after Cd application, but only in first 5 days (Lee and Korban 2002). Activity of

AtPCS1 is after it regulated only on the enzymatic level. Presence of GSH-Cd is

limiting factor for PC biosynthesis (Lee and Korban 2002; Lee et al. 2003).

However, there are still unanswered questions in the regulation of PCs biosynthesis

under Cd exposition (Semane et al. 2007). On the other hand, overexpression of

AtPCS1 does not increase production of PCs and leads to the increased sensitivity

of experimental plants to Cd. This fact may be connected with disruption of metals

homeostasis, toxicity of PCs excess or depletion of GSH (Lee et al. 2003).

Enhanced expression of AtMT2a and AtMT3 for metallothioneins like proteins

(MTLs) after Cd exposition is connected with increased tolerance of plants to Cd.

Expression of these genes in stomatal cells of Vicia faba increased their tolerance to
Cd under reduction of ROS formation. MTLs are localised in cytoplasm, they are

not translocated into vacuoles after Cd exposition in comparison with PCs.

In addition, protective effect of MTLs is based on their antioxidant properties.

This fact has been confirmed in experiments with hydrogen peroxide as a generator

of ROS (Lee et al. 2004). Transporters of metals of the transport ATPase group –

AtHMA2, AtHMA3 and AtHMA4 plays important role in complexation of heavy

metals in cells. Heterological expression of AtHMA3 in ycf1 yeast mutants has

confirmed role of this transporter in vacuolar sequestration of cadmium ions.

Differences in the expression of AtHMA2, AtHMA3 and AtHMA4 are indicative

to their different roles (Gravot et al. 2004). AtHMA2 and AtHMA4 are localised

in plasmalemma, whereas AtHMA3 in tonoplast, so, it is well evident that

AtHMA3 is involved in sequestration of toxic heavy metal ions into vacuoles.

Highest AtHMA2, AtHMA4 and AtHMA3 expression was detected in the cells of

root stele and in root vascular tissue as well as in stomatal cells and cells

of hydatodes. All these cells are in the first contact with heavy metals ions – roots

with soil/water and stomata and hydatodes with air polluted by heavy metals.
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In addition, these tissues are essential for maintenance of physiological functions,

so, detoxification of heavy metals in these tissues is fundamental. AtHMA2 and

AtHMA4, which main functions consist in transport of zinc ions to the xylem, have

significant affinity to cadmium ions and are able to execute their translocation from

roots to shoots. These fact have been confirmed using mutants hma4 (increased

amount of Cd in roots, reduced transport to the shoots), and hma2 hma4
(Cd accumulation is reduced to only 3% compared to wild type, 2–3-fold higher

sensitivity to cadmium ions). HMA2 and HMA4 represent the main mechanism of

Cd transport to the xylem. However, in comparison of hma2 hma4 and cad1
mutants, sensitivity of cad1 mutant to cadmium ions is 10–20-fold higher (Wong

and Cobbett 2009).

AtNRAMP1, AtNRAMP3 and AtNRAMP4 are the next transporters associated

with cadmium transport. AtNRAMP1, AtNRAMP3 and AtNRAMP4 are expressed in
both roots and shoots. Expression of AtNRAMP3 and AtNRAMP4 is induced by

iron deficiency; it means that their primary function consists in Fe transport.

AtNRAMP3 knock-out does not lead to the reduction of iron absorption (as a result

of IRT1 transporter redundancy), but to the increase of tolerance of mutants to

cadmium ions. Its overexpression is connected with increased sensitivity of plants

to the Cd. In conclusion, AtNRAMP3 is able to transport both Fe and Cd ions,

which means that its function consists in iron absorption under presence of Cd,

which inhibits other Fe transporters (Thomine et al. 2000). A. thaliana genome

contains ten AtPCR (plant cadmium resistance) genes, which are connected with

cadmium resistance. AtPCR1 and AtPCR2 expression is induced by Cd exposition.

Their expression is not connected with GSH. This fact has been verified by BSO

application (Song et al. 2004).

PDR transporters play important role in host-pathogen interactions, enhanced

expression of some PDR has been recorded under different stress conditions.

AtPDR8 is up-regulated at Cd and Pb exposition. Knockout or silencing of

AtPDR8 increases sensitivity of experimental plants to Cd, on the other hand, its

overexpression reduces amount of accumulated Cd in plants and reduce rate of Cd

absorption by individual protoplasts. AtPDR8 serves as a pump for transport of

Cd ions out of cells (Kim et al. 2007). Mutation of gene CDR3 – cdr3-1D – leads

to the enhancement of tolerance of mutants to Cd, Pb, Cu, H2O2, and to the

reduction of Cd and Pb accumulation. Cdr3-1D mutant has increased expression

of AtPDR8/AtPDR12, AtPCR1 and GSH1 and increased levels of GSH. CDR3 is

responsible for regulation of above-mentioned genes (Wang et al. 2011).

All transporters found in A. thaliana are summarized in Table 3.2. In addition,

their comparison with next Brassicaceae species is presented.
Nitric oxide (NO), important signal molecule, plays crucial role in Cd metabo-

lism in plants. Exposition of plants to cadmium ions leads to the enhancement of

NO production in both roots and leaves. On the other hand, supplementation of

plants by NO scavengers cPITO and/or L-NAME causes reduction of Cd accumu-

lation in roots under reduction of inhibition of root growth. Nevertheless, cadmium

accumulation in aerial parts – shoots – is not altered. All these facts mean that NO is

responsible for inhibition of root growth. In addition, NO modulates functions of
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calcium channels and pumps, because application of NO scavengers does not lead

to the reduction of calcium content in roots after cadmium exposition in comparison

with NO-scavengers untreated plants (Besson-Bard et al. 2009).

3.6 Connection Between Primary and Secondary Metabolism

and Cadmium Hyperaccumulation

Sulphur belongs to the group of the most important essential nutrients in organisms.

In plants, sulphur is taken up especially in the form of inorganic sulphate.

After reduction, sulphur is incorporated into cysteine in the processes of primary

sulphate assimilation. Cysteine serves as a sulphur donor for biosynthesis of both

methionine, the major sulphur containing amino acid in plants and precursor of

glucosinolates biosynthesis (Fig. 3.3), and glutathione, the most important protec-

tive non-protein thiol compound (Mugford et al. 2011). Glucosinolates, mustard

oil glycosides, represent one of the bioactive sulphur-containing secondary

metabolites in plants, which occur almost only in members of order Brassicales

Table 3.2 Cadmium transporters connected with its accumulation in the Brassicaceae

Transporters Metals Plants Reference(s)

HMA3 Cd, Co,

Pb, Zn

A. thaliana (AtHMA3) Gravot et al. (2004), Morel et al.

(2009), and Ueno et al. (2011)Thlaspi caerulescens
(TcHMA3)

HMA2 Cd, Zn A. thaliana (AtHMA2) Eren and Arguello (2004), Eren et al.

(2006, 2007), and Wong and

Cobbett (2009)

HMA4 Cd, Cu,

Pb, Zn

A. thaliana (AtHMA4),
A. halleri (AhHMA4),
T. caerulescens (TcHMA4)

Courbot et al. (2007), Hanikenne

et al. (2008), and Grispen et al.

(2011)

NRAMP1 Cd, Fe, Mn A. thaliana Curie et al. (2000) and Cailliatte et al.

(2010)

NRAMP3 Cd, Fe, Mn A. thaliana (AtNRAMP3) Wei et al. (2009) and Oomen et al.

(2009)T. caerulescens
(TcNRAMP3)

NRAMP4 Cd, Fe,

Mn, Zn

A. thaliana (AtNRAMP4) Lanquar et al. (2004, 2005, 2010),

and Oomen et al. (2009)T. caerulescens
(TcNRAMP4)

NRAMP Cd, Zn B. juncea (BjNRAMP) Das et al. (2011)

YSL Cd, Zn B. juncea (BjYSL) Das et al. (2011)

PDR8 Cd A. thaliana (AtPDR8) Kobae et al. (2006) and Kim et al.

(2007)

MRP6 Cd A. thaliana (AtMRP6) Gaillard et al. (2008)

MRP7 Cd A. thaliana (AtMRP7) Wojas et al. (2009)

IRT1 Cd, Fe A. halleri, T. caerulescens Zhao et al. (2006), Plaza et al. (2007),

and Ueno et al. (2008)

ZNT6 Cd T. caerulescens Wu et al. (2009)

ZIP9 Cd, Fe,

Mn, Zn

T. caerulescens De Mortel et al. (2008)
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(Fahey et al. 2001; Raybould and Moyes 2001; Redovnikovic et al. 2008; Hopkins

et al. 2009; Vig et al. 2009). However, these compounds have been identified in

some plants of Euphorbiaceae family (Rodman 1991a, b; Rodman et al. 1998; Hu

et al. 2010). More than 120 glucosinolated have been identified in the Brassicaceae.
Some of them and their degradation products, such as sulphoraphane, crambene

and indole-3-carbinol, are in the centre of interest due to their chemoprotective

effect, especially in connection with malignant diseases (Clarke et al. 2011;
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Hamsa et al. 2011; Lubet et al. 2011; Malaguti et al. 2011; Rajendran et al. 2011;

Razis et al. 2011; Sharma et al. 2011; Shimamoto et al. 2011; Starrett and

Blake 2011; Wiczk and Herman-Antosiewicz 2011). Their structure is based on

ά-D-glucopyranose residue, which is linked via a sulphur atom to a (Z)-N-
hydroximinosulphate ester. Basic structure is modified by variable R group,

which is derived from some amino acids. In addition, it seems that sulphur in the

glucosinolate structure may be replaced by similar selenium under selenogluco-

sinolates formation. However, these compounds are still discussed (Bertelsen et al.

1988). Glucosinolates are derived from a limited group of amino acids, including

alanine, leucine, methionine, phenylalanine and tryptophan. Their biosynthesis may

be divided into three phases: (i) elongation of amino acid chain, in which methylene

groups are inserted into the side chain, (ii) conversion of the amino acid moiety to

the glucosinolate structure, and (iii) modification of the side chain – oxidation,

hydroxylation, or esterification (Du et al. 1997; Ludwig-Muller et al. 1999; de

Quiros et al. 2000; Graser et al. 2001; Falk et al. 2004; Field et al. 2004; Hirai et al.

2007; Sawada et al. 2007). However, their biosynthesis is still under the discussion

Glucosinolates are stored in the vacuoles. After damage of plant tissue and consec-

utive exposure to myrosinases, ά-thioglucoside glucosidases, they are hydrolysed

to isothiocyanates and other products of toxicological importance, such as nitriles

and thiocyanates (Xue et al. 1995; Rask et al. 2000; Andersson et al. 2009).

Formation of next product is connected with protein factors called specifier

proteins, which are able to promote formation of alternative products on the

dependence on the glucosinolate side chain structure (Wittstock and Burow 2007;

Burow and Wittstock 2009; Kissen and Bones 2009). Glucosinolates as well as the

products of their hydrolysis are connected with the protection against herbivores

and pathogens. Glucosinolates as well as product of their hydrolysis induce GST

activity in some insect, such as Myzus persicae (green peach aphid) feeding

Brassica napus and next members of the Brassicaceae (Vanhaelen et al. 2001;

Francis et al. 2005). Defensive role for indole glucosinolates is suggested by

the observation that atr1D mutant A. thaliana plants, which overproduce indole

glucosinolates, are more resistant to M. persicae, whereas cyp79B2/cyp79B3

A. thaliana double mutants that lack indole glucosinolates, succumb toM. persicae
more rapidly. Indole glucosinolate breakdown products, including conjugates

formed with ascorbate, glutathione and amino acids, are elevated in the honeydew

of M. persicae feeding from atr1D mutant plants, but are absent when the aphids

are feeding on cyp79B2 cyp79B3 double mutants (Hanley and Parsley 1990;

Kim et al. 2008).

On the other hand, response of A. thaliana to herbivore includes activation of

genes involved in oxidative stress, calcium-dependent signalling and pathogenesis-

related responses (Moran et al. 2002). Glutathione S-transferases (GST) are mainly

cytosolic enzymes that catalyse the conjugation of electrophile molecules with

reduced glutathione under formation of less toxic products. Enhanced GST activity

was demonstrated in Episyrphus balteatus (hoverfly), and Brevicoryne brassicae
(cabbage aphid). Isothiocyanates as degradation product of glucosinolates were

detected in cabbage aphid (Chaplin-Kramer et al. 2011; Khan et al. 2011).
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Nevertheless, this chapter is not focused on biochemistry of glucosinolates and

characterization of their breakdown product. For additional information, see

published articles (Kim et al. 2008).

In plants, toxic substances become more water soluble (more hydrophilic)

and they can subsequently be stored in vacuoles. Compartmentation in vacuoles

plays important role in detoxification of many compounds. Tripeptide glutathione

as well as phytochelatins as glutathione oligomers play crucial role in detoxification

of heavy metal ions and xenobiotics in plants. Cysteine moiety/moieties with

sulfhydryl (thiol) groups, which serves as a proton donor, plays essential role

in their function.

Glutathione is synthesized from the amino acids L-cysteine, L-glutamic acid

and L-glycine (Fig. 3.4). In the first step, g-glutamylcysteine is synthesized from

L-glutamine and L-cysteine via the enzyme g-glutamylcysteine synthetase

(glutamate cysteine ligase, GCL), in the second step, glycine is added to the

C-terminal of g-glutamylcysteine under glutathione formation. This reaction is

catalysed by glutathione synthetase (GS). Phytochelatins are synthesized via

phytochelatin synthases (PCS) activity (Fig. 3.4). There are many questions

in the connection between glutathione and phytochelatins and glucosinolates.

However, this relationship can be expected. Treatment of A. thaliana by cadmium

ions led to the decrease of a content of total glucosinolates, especially indole

glucosinolates (De Mortel et al. 2008; Sun et al. 2009). Similar results have been

obtained in Thlaspi praecox and T. arvense. In the case of cadmium-sensitive

T. arvense, its application led to the shift from alkenyl glucosinolates (mainly

sinigrin) to indolyl glucosinolates. Treatment of the second species, T. praecox,

Fig. 3.4 3-D structures of reduced glutathione and phytochelatin2
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by cadmium led to the increase of total glucosinolates, especially benzyl

glucosinolate sinalbin (Tolra et al. 2006). Connection between glucosinolates

biosynthesis, zinc accumulation and organ specificity was demonstrated on

T. coerulescens in the study of Tolra et al. (2001). Whereas zinc treatment led to

the decrease of glucosinolate sinalbin in shoots, its concentrations increased with zinc

accumulation. Changes in sinalbin were the most significant, other glucosinolates

remained almost unaltered. Only week decrease of indolyl glucosinolates in both

shoots and roots and 3-butenylglucosinolate in the roots was observed (Tolra et al.

2001). There are two fundamental questions. Where is a source of sulphur in

glucosinolate biosynthesis? Firstly, differences have been observed in the processes

of sulphur assimilation. Adenosine 50-phosphosulphate (APS) kinase limits the

availability of sulphur for biosynthesis of sulphur-containing secondary metabolites.

Reduction of its activity leads to the reduction of glucosinolates biosynthesis and

increase of thiol compounds formation in A. thaliana. Overexpression of enzyme

APS reductase has no effect on glucosinolates production, but increases production

of thiol compounds (Mugford et al. 2011). However, the source of reduced sulphur

atom in the core glucosinolate structure remains unknown. Recent evidences show

the possible role of glutathione (GSH) in this process. Work of Geu-Flores shows

role of GSH as a sulphur donor in glucosinolates biosynthesis. The A. thaliana
pad2-1 mutant is connected with reduced levels of glucosinolates, respectively

camalexin. PAD2 gene encodes a g-glutamylcysteine synthetase that is involved

in glutathione biosynthesis, so, pad2-1 mutant contains only 20% of the GSH in

comparison with wild plants. Reduced GSH levels correlate with reduction of

accumulation of the two major glucosinolates in A. thaliana – indolyl-3-methyl-

glucosinolate and 4-methylsulfinylbutyl-glucosinolate (Schlaeppi et al. 2008).

All these data suggest participation of GSH in glucosinolate biosynthesis and

close connection between metabolism of thiol compounds and glucosinolates.

The second question consists in involvement of enzymes connected with thiol

biosynthesis in the biosynthesis of glucosinolates. Experiments with A. thaliana
mutants impaired in the production of the g-glutamyl peptidases GGP1 and GGP3

have demonstrated altered biosynthesis of glucosinolates. GGPs catalyse transfer

of g-glutamyl functional groups of glutathione to acceptors. These peptidases

have been found in many plant species and are connected with many physio-

logical processes in plants, including ripening of seeds/fruits and degradation of

some biomolecules (Lancaster and Shaw 1994; Shaw et al. 2005; Li et al. 2008;

Ohkama-Ohtsu et al. 2008). Function of known cytosolic g-glutamyl peptidases

in the processes of formation of GSH conjugates has been demonstrated in

A. thaliana plants (Geu-Flores et al. 2011). Role of GG1 was investigated

in benzylglucosinolate-producing non-cruciferous plant Nicotiana benthamiana.
In this study, increased levels of benzylglucosinolate in the presence of GGP1

were accompanied by the high accumulation of the last intermediate desulfoben-

zylglucosinolate. This fact suggest role of sufotransferase AtSOT16 in the forma-

tion of terminal product – benzylglucosinolate (Moldrup et al. 2011). Role of PCS

in glucosinolate biosynthesis is widely discussed (Clay et al. 2009). It seems that
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PCS serve as a peptidase in indole glucosinolate biosynthesis in A. thaliana.
Glucosinolate-derived molecules seem to be the most likely candidates as PCS

substrates in A. thaliana (Clemens and Persoh 2009). All these data suggest role of

PCS not only in homeostasis of heavy metals, but also their regulatory role in

glucosinolates biosynthesis.

3.7 Impact of Members of Brassicaceae Family on Cadmium

Elimination from Living Environment – Possibilities

of Increasing of Cadmium-Hyperaccumulation

by Brasicaceaeans

There are different strategies in enhancement of accumulation properties of

members of the Brassicaceae. The first approach consists in supplementation

of soil by additives, compounds that are able to increase uptake of heavy metals

including cadmium. There are many compounds, which were tested of possible

chelators of heavy metals. However, their usage has many disadvantages including

potential toxicity with reduction of biomass production and hazard for the environ-

ment due to mobilization of heavy metals. On the other hand, heavy-metals

accumulating plants may represent potential risk because of their possible entry

the food chain. All these questions must be carefully considered. Chelators in the

phytoremediation by the Brassicaceae are summarized in Table 3.3.

In the Brassicaceae, effect of two different compounds on cadmium uptake –

nitrilotriacetate (NTA) and citric acid (CA) – by Indian mustard (Brassica juncea)

Table 3.3 Chelators used in members of the Brassicaceae in phytoremediation

Chelator Heavy metal(s) Plant species Reference(s)

EDTA, EDDS, histidine Cu, Pg, Fe, Zn Brassica juncea Karczewska et al. (2009)

EDTA Cd, Cr, Ni Thlaspi caerulascens Munn et al. (2008)

EDTA, DTPA Cr, Ni Brassica juncea Hsiao et al. (2007)

Oxalic acid, citric acid

EDTA Cu, Cd, Pb, Zn Brassica napus Turan and Bringu (2007)

Brassica juncea

Nitrilotriacetate Cd Brassica juncea Quartacci et al. (2005)

Citric acid

[S,S]-ethylenediamine

disuccinate

Pb Thlaspi goesingense Finzgar et al. (2005, 2006)

Thiol-rich chelators As, Hg Arabidopsis halleri Meagher and Heaton (2005)

EDTA, EDDS, DTPA Cu Brassica rapa v.

pekinensis
Kos and Lestan (2004)

NH4Cl, casein, citric acid Cd, Cu, Ni, Zn Brassica chinensis Gramss et al. (2004)

EDTA Pb Brassica juncea Blaylock et al. (1997)
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were investigated in the study of Quartacci et al. (2005). NTA-treated plants

demonstrated twofold increase of cadmium accumulation compared to control plants

(Quartacci et al. 2005). EDTA, EDDS and histidine as potential chelators ofCu, Pb, Fe

and Zn for Brassica juncea uptake were used in experiments of Karczewska et al.

(2009). Synthetic aminopolycarboxylic acids ethylenediamine tetracarboxylic acid

(EDTA) and diethylenetriamin pentaacetate (DTPA) together with low-molecular

organic acids oxalic acid and citric acid were used in experiments with Brassica
juncea cultivated in serpentine-mine tailings contaminated by Cr and Ni. Authors

declare advantages of the use of low-molecular organic acids as chelators due to

reduction of environmental risk in phytoremediation (Hsiao et al. 2007). However,

further data are still missing.

The second approach is based on construction of transgenic plants. This method

is based on an introducing of foreign genes, which are connected with uptake,

transport and accumulation of heavy metal/metals. A yeast cadmium factor 1

(YCF1), a member of the ATP-binding cassette (ABC) transporters, is localised

at the vacuolar membrane in Saccharomyces cerevisiae. YCF1 gene introduced

to the transgenic Brassica juncea plants showed 1.3- to 1.6-fold tolerance to

cadmium ions compared to wild plants (Bhuiyan et al. 2011). Overexpression of

BjCdR15 in transgenic Arabidopsis thaliana and Nicotiana tabacum led to the

enhancement of cadmium tolerance. Arabidopsis tga3-2 mutants demonstrated high

cadmium accumulation in roots and inhibition of its transport into aerial parts

(Farinati et al. 2010). Possibilities of different approaches including genetic

manipulations for improvement of heavy metals tolerance and accumulation are

summarized in reviews (Pilon-Smits and Pilon 2002; Singh et al. 2003; Czako et al.

2006; Lynch 2007; Yadav 2010; Anjum et al. 2012).

3.8 Conclusions and Perspectives

An ideal plant for phytoremediation should meet several criteria: (i) to grow rapidly

and to produce large quantities of biomass, (ii) to deeply root and to have an easily

harvested shoots, and (iii) to accumulate high concentrations of contaminants in the

shoots. Presently known hyperaccumulators of metals, in other words plants capa-

ble of over-accumulation metals in their tissues, meet the third criterion of an ideal

plant for phytoremediation as Brassicaceae. In contrast, there other plants as crops

meet the first two criteria of an ideal plant for phytoremediation. The combination

of these properties by some genetic manipulation could be very promising for the

future of remediation of polluted environment by plants.
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