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catalyze the synthesis of heavy metal-binding 
PCs3, 4. PCs, cysteine-rich peptides, are produced 
from glutamine, cysteine and glycine. Unlike 
commonmetal-binding structures, MT and 
GSH, PCs are not gene-encoded, but enzyma-
tically synthesized peptides5. PCs have been 
identified in a wide variety of plant species, 
microorganisms and some invertebrates6-10. 
They are structurally related to glutathione 
(GSH) and were presumed to be the products 
of a biosynthetic pathway. Numerous physio-
logical, biochemical and genetic studies have 
confirmed GSH as the substrate for PCs bio-
synthesis11,12. The general structure of PCs is 
(c-Glu-Cys)n-Gly, with increasing repetitions 
of the dipeptide Glu-Cys linked through a 
c-carboxylamide bond (Fig 1), where n  varies 
from 2 to 11, but typically reaching not further 
than five13. Except glycine, also other amino 
acid residues can be found on C-terminal end 
of (γ-Glu-Cys)n peptides. Examples of which, 
like Ser, Glu, Gln and Ala are often found  at 
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1. Phytochelatins and phytochela-
tin synthase

Increasing emissions of heavy metals such 
as cadmium, mercury, and arsenic into the 
environment pose an acute problem for all 
organisms. As a mass of protection, many of 
them, develop mechanisms of full resistance 
or at least exhibit partially resisting toward 
these effects. In this way, based on the chemical 
similarity of the involved metallic species, they 
are able, to replace them with viable metals 
necessary for the effective functioning of the 
cell. These heavy metals may be bound to the 
functional groups of proteins and modify their 
structure and through this also affect their 
physiological function1, 2. Higher plants, algae, 
certain yeasts and animals are able to respond 
to heavy metals by synthesizing phytochelatins 
(PCs) and related cysteine-rich polypeptides. 
Phytochelatin synthases are γ-glutamylcysteine 
(γ-Glu-Cys) dipeptidyl transpeptidases that 
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this position in some plant species, and they 
are assumed to be functionally analogous and 
synthesised via essentially similar biochemical 
pathways14, 15. In in vitro studies of PC synthase 
expressed in E. coli or in S. cerevisiae, the en-
zyme was activated to varying extents by Cd, 
Cu, Ag, Hg, Zn and Pb ions16-18. PC synthase 
genes were also isolated in A.thaliana16 and 
T.aestivum18. Genes homologous to those from 
A.thaliana and T.aestivum were also found in 
S.pombe and C.elegans, suggesting the existence 
of PC synthase genes in more species19.

2. Phytochelatins 
inmicroorganisms

Interestingly, although PC(n=2) has been 
described in the yeast S. cerevisiae, there is no 
homologue of the PC-synthase genes in the 
S. cerevisiae genome. An alternative pathway 
for PCs biosynthesis which has been in S. po-
mbe has been proposed. However, it can be a 
similar pathway that functions in S. cerevisiae 
too20. A study shows that the two vacuolar se-
rine carboxypeptidases are responsible for PC 
synthesis in S. cerevisiae. Therefore, the finding 
of a PCS-like activity of these enzymes in vivo 
discloses another route for PC biosynthesis in 
eukaryotes21.

3. Phytochelatins in plants
Contamination of soils with toxic metals has 

often resulted from human activities, especi-
ally those related to mining, industrial and 
emissions. In this context, phytoremediation 
has been developed as a cost effective and en-
vironmentally friendly remediation method of 
contaminated soils22, 23. In recent years many 
studies showed the mechanisms of chelation of 
metals-PC24-28. Chelation and sequestration of 
metals by particular ligands are also mechani-
sms used by plants to cope with metal stress. 

The two best-characterized metal-binding 
ligands in plant cells are the PCs and metallo-
thioneins 29-31. Naturally hyperaccumulating 
plants do not overproduce PCs as part of their 
mechanism against toxic metals and this fea-
ture appears to be an inducible rather than a 
constitutive mechanism, observed especially 
in metal non-tolerant plants8.

Several studies of plants that overexpressed 
γ-glutamyl-cysteine synthetase or transgenic 
plants expressing bacterial γ-glutamyl-cysteine 
synthetase evaluated its effect on metal toleran-
ce based on the assumption that higher levels of 
GSH and PCs will lead to more efficient metal 
sequestration32. Bacopa monnieri, a wetland 
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Figure 1. a) The general structure of PCs.  b) Biosynthesis of phytochelatins.
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macrophyte is well known for its accumulation 
potential of metals and metal tolerance and 
thus is suitable in phytoremediation. Aquatic 
plants respond to metal stress by increased 
production of PCs as well as other antioxidants. 
B. monnieri  is wellknown for the accumulation 
potential of   various heavy metals and warrants 
its evaluation for metal tolerance and detoxifi-
cation mechanism for its suitability in phytore-
mediation9. Arabidopsis thaliana showed that 
Cd is immediately scavenged by thiols in root 
cells, in particular PCs, at the expense of GSH. 
At the same time, a redox signal is suggested 
to be generated by a decreased GSH pool in 
combination with an altered GSH:GSSG ratio 
in order to increase the antioxidant capacity24. 
Overexpression of PCs synthase in Arabidopsis 
led to 20-100 times more biomass on 250 and 
300 μM arsenate than in the wild type. Also, 
the accumulation of thiol-peptides was 10 ti-
mes higher when after the exposure to Cd and 
arsenic, compared to the wild type. Gamma-
-glutamyl cysteine, which is a substrate for PC 
synthesis, increased rapidly, after arsenate or 
cadmium exposure. Overexpression of this 
gene can be useful for phytoremediating33. Also, 
Legumes are also capable for synthesising ho-
mophytochelatins in response to heavy metal 
stress32. Citrus plants were able to synthesize 
PCs in response to heavy metal intoxication26. 
In wheat, PCs–heavy metal complexes have 
been reported to accumulate in the vacuole. 
Retention of Cd in the root cell vacuoles might 
influence the symplastic radial Cd transport to 
the xylem and further transport to the shoot, 
resulting in genotypic differences in grain Cd 
accumulation34.

4. Phytochelatins in animals
PCs proteins have been broadly described 

and characterized in plants, yeasts, algae, fungi 
and bacteria, as well as nematodes and trema-
todes35. PC synthase genes are also present in 
animal species from several different phyla. PCs 
synthesis appears not to be transcriptionally 
regulated in animals36. Originally it is thought 
to be found only in plants and yeast, but PC 
synthase genes have been found in species that 
span almost the whole animal tree of life. 

4.1 Fuctionsl of PCs in animals
Biochemical studies have also shown that 

these PCS genes are functional: the Caenor-
habditis elegans PC synthase produces PCs 
when it is expressed in an appropriate host, 
and knocking out the gene increases the sen-
sitivity of C. elegans to cadmium37. In several 
studies PCs have been measured by direct bio-
chemical analysis of C. elegans tissue extracts, 
and found that cadmium exposure did indeed 
increase PCs levels in C. elegans. PC2, PC3, and 
PC4 have all been found, with PC2 the highest 
concentration6, 38, 39. Therefore, these studies 
showed conclude that PCs production plays a 
major role in protecting C. elegans against cad-
mium toxicity. PC2 and PC3 were increased in 
autochthonous Lumbricus rubellus populations 
sampled from contaminated sites36. 

The yeast (i.e. S. pombe) possesses an ATP-
-binding cassette (ABC) transporter, Hmt1, 
which was originally thought to play a possible 
role in translocation of PCs–metal complexes 
to the vacuole. However, while knocking out 
the C. elegans HMT-1 (CeHMT-1) the sensiti-
vity toward cadmium does increase, and the 
increase is greater than could be explained by 
a lack of PCS alone40.

It is important to say that MTs are widely esta-
blished as a key metal detoxification system in 
animals, even though they certainly have many 
other biological functions as well. Until now, 
there is very little known about how MTs and 
PCs may complement each other for dealing 
with toxic metals36.

5. Methods for phytochelatins de-
termination

Recently, Wood et al., showed the analytical 
methodology for quantification of PCs and their 
metal(loid) complexes41. The classical approach 
to the analysis of PCs is by reversed phase HPLC 
with post-column derivatization of the sulfhyd-
ryl groups and spectrophotometric detection 
(but this is not specific to PCs). Independent 
studies showed a sensitive method for deter-
mination of PCs by HPLC with fluorescence 
detection42, 43. A simple sensitive method for 
the identification, sequencing and quantitative 
determination of PCs in plants by electrospray 
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tandem mass spectrometry (ESI MS-MS) was 
showed in different studies44, 45. Other study 
showed the combination of three process for 
identification PCs: (1) simple sample prepara-
tion including thiol reduction, (2) rapid and 
high resolution separation using ultra-perfor-
mance liquid chromatography (UPLC), and 
(3) specific and sensitive ESI-MS/MS detection 
using multi-reaction mode (MRM) transitions 
in alga’s extract46. Zitka et al., optimized high 
performance liquid chromatography coupled 
with electrochemical detector for determina-
tion of PC247. 

6. Methods for phytochelatin syn-
thase determination 

High performance liquid chromatography 
coupled with electrochemical detector was to 
suggest as a new tool for determination of the 
PCs synthesis activity48. The optimized pro-
cedure was subsequently used for studying 
PC synthase activity in the tobacco BY-2 cells 
treated with different concentrations of  Cd (II) 
ions and the results were in good agreement 
with Nakazawa et al.,49.  Another study in ani-
mals showed that HPLC-LC system coupled to a 
single quadrupole LC–mass spectrometer equi-
pped with electrospray ionization was sensitive 
method for determination of PCs synthesis 
activity 35. A high sensitive assay for PCS acti-
vity was devised, in which the dequenching of 
Cu(I)-bathocuproinedisulfonate complexes was 
used in the detection system of a reversed-phase 
high-performance liquid chromatography. The 
present assay method is a sensitive tool that can 
be used to investigate this issue and would allow 
determination of PCS activity using 10–100-
fold less protein50.
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