Human papilloma virus (HPV) and methods for its identification in head and neck cancers
Ana Maria Jimenez Jimenez, Branislav Ruttkay-Nedecký, Ondřej Zítka, Vojtěch Adam, René Kizek

1. Introduction
Human papillomavirus (HPV) selectively infects the epithelium of the skin and mucous membranes. Specific HPV types are associated with squamous cell carcinoma, adenocarcinoma, and dysplasias of the cervix, penis, anus, vagina and vulva. The term head and neck cancer includes malignancy in an area that comprises the skin, oral cavity, salivary glands, lip, pharynx, larynx, nasal cavity, paranasal sinuses and soft tissues of the neck and ear.

The first association of HPV with head and neck cancer was published in 1985. HPV was also shown to play a role in the pathogenesis of a subset of head and neck squamous cell carcinomas (HNSCCs). Almost 650,000 patients worldwide are diagnosed with head or neck cancer each year and 350,000 patients die of this disease as this cancer is the sixth most prevalent type of cancer worldwide.

The ratio of males to females is approximately 2:1. From the point of view of the infection, HPVs have developed several molecular mechanisms to enable infected cells to suppress apoptosis. Based on their potential for oncogenesis, HPV types can be classified both as high-risk or low-risk. Precancerous lesions of the oral mucosa are epithelial changes that are able to undergo malignant transformation more likely than normal tissue at other mucosal sites.

A total of 150 HPV genotypes have been identified. The HPV 16 and 18 strains, which are known to cause nearly all cases of cervical cancer, also raise the risk of developing oro-
pharyngeal cancer10. The evident similarities between both cervical and head and neck tumors prompted the utilization of the same HPV diagnostic procedures. There is now compelling evidence that specially designed methodologies must be employed for prognosis11, 12.

2. HPV virology

HPVs are quite small, non-enveloped double-stranded circular DNA viruses, that has diameter of 55 nanometers. The DNA of HPV has 8,000 nucleotide base pairs associated with histones. HPV genome is enclosed in an icosahedral capsid shell comprised of major and minor capsid proteins2, 13 and can be divided into 3 domains: an early region with 6 E genes E1, E2, E4, E5, E6 and E7; a late region with 2 L genes, L1 and L2; and a non-coding regulatory region (NCR) of approximately 1 kb. Organisation of HPV 16 genome is shown in Fig. 11.

The L1 and L2 late proteins form capsomers of the virus that encapsidate the viral DNA. The early E proteins have different functions. The E1 protein binds to the origin of replication. The E2 protein binds to E1 protein and stimulates viral DNA replication. The E2 protein also acts as a transcriptional repressor of HPV E6 and E7 gene expression. The E4 protein is expressed in an later phase with a role in the assembly and release of the viral particle. The E2 protein also acts as a transcriptional repressor of HPV E6 and E7 gene expression. The E4 protein is expressed in an later phase with a role in the assembly and release of the viral particle. The E5 protein stimulates the transforming activity of the epidermal growth factor receptor resulting in the increased cell proliferation14, 15.

The viral protein E6 and E7 are implied in tumorigenesis and are known to induce degradation of the tumor suppressors p53 and pRB, respectively16. They can suppress apoptosis and alter the function of factors involved in cell-cycle regulation, thereby facilitating prolongation of the proliferative stage of keratinocyte differentiation17. The E6 protein of HPV-16 is a small polypeptide of 150 amino acids. This protein can inactivate p53 by targeting the protein for ubiquitination and consequent degradation18. The E7 protein of HPV-16 is a small, nuclear polypeptide of 100 amino acids. E7 binds to retinoblastoma protein (pRb)20. Besides pRb, E7 also interacts with various other proteins, most of which are important regulators of the cell growth. The E7 protein induces abnormal centrosome duplication, resulting in multipolar, abnormal mitoses, aneuploidy and genomic instability17, 22.

The majority of cervical carcinomas caused by the two most common HPV types, HPV-16 and HPV-18, contain integrated viral sequences that express E6-E7 protein21. E6-E7 oncogene expression is considered necessary for carcinogenesis, and maintenance of the malignant phenotype of these cancers2, 24.

3. Methods for detection and identification of HPV

Some of the main methodologies for detection of HPV virus: southern blotting assay, polymerase chain reaction (PCR) testing, real time PCR, in situ hybridization (ISH) analysis, immunohistochemical (IHC) staining for p16 are shown in Table 126.

Southern Blotting Assay

Southern blotting is an assay that has long been one of the standard techniques for the detection of HPV DNAs, and it has the ability to differentiate between episomal and integrated DNA and can detect as little as 0.1 copies of viral DNA per cell27.

Southern blot has a theoretically higher specificity but is less sensitive than PCR. This method cannot be applied to formalin-fixed, paraffin-embedded tissue samples because they contain cross-linked, degraded nucleic acids. Nevertheless, the Southern blotting assay can be useful for comparing results of other methods for detection of viral integration, though this method has no practical or clinical utilization27, 28.

The E7 protein of HPV-16 is a small, nuclear polypeptide of 100 amino acids. E7 binds to retinoblastoma protein (pRb)20. Besides pRb, E7 also interacts with various other proteins, most of which are important regulators of the cell growth. The E7 protein induces abnormal centrosome duplication, resulting in multipolar, abnormal mitoses, aneuploidy and genomic instability. The E7 protein of HPV-16 is a small, nuclear polypeptide of 100 amino acids. E7 binds to retinoblastoma protein (pRb)20. Besides pRb, E7 also interacts with various other proteins, most of which are important regulators of the cell growth. The E7 protein induces abnormal centrosome duplication, resulting in multipolar, abnormal mitoses, aneuploidy and genomic instability. The E7 protein of HPV-16 is a small, nuclear polypeptide of 100 amino acids. E7 binds to retinoblastoma protein (pRb)20. Besides pRb, E7 also interacts with various other proteins, most of which are important regulators of the cell growth. The E7 protein induces abnormal centrosome duplication, resulting in multipolar, abnormal mitoses, aneuploidy and genomic instability.
Polymerase Chain Reaction (PCR) and real-time PCR

Polymerase chain reaction (PCR) is a sensitive marker for HPV DNA detection and RT-PCR may be a sensitive marker for HPV mRNA quantification. PCR represents a highly-sensitive and cost-effective method for HPV detection. In theory, it can be used to detect as little as one copy of a DNA sequence and can be utilized in paraffin-embedded tissue or fresh tissue from biopsies. The non-coding region (NCR) is indicated by the black box. Adopted and modified according Chen et al.

In Situ Hybridization for HPV

In situ hybridization (ISH) is the only molecular method allowing reliable detection and identification of HPV in topographical relationship to their pathological lesions. Unlike in other molecular methods, in ISH the whole HPV detection procedure occurs within the nucleus of infected cells. The result of the hybridization reaction is evaluated microscopically and the appearance of an appropriate precipitate within the nucleus of epithelial cells is indicative for the presence of HPV in the specimen. In addition, the physical state of the virus can be evaluated by the presence of punctuate signals for integrated virus and diffuse signals for just a few copies of HPV DNA per cell. Attempts have been made to resolve this issue through use of real-time (RT)-PCR, which provides a quantitative analysis of viral load. RT-PCR amplification of viral E6/E7 mRNA is considered for the detection of clinically significant HPV infection within tumor specimens as it detects transcriptionally active HPV. Nonetheless, PCR and RT-PCR cannot localize HPV in the area of neoplasia and other techniques like ISH can provide this information together with a higher clinical specificity.

Figure 1. Genetic Map of the human papillomavirus (HPV) type 16. HPV genome is a double-stranded circular DNA molecule. Early genes from the DNA sequence are designated E1 to E7 and late genes, L1, and L2, indicated in pink boxes. The non-coding region (NCR) is indicated by the black box. Adopted and modified according Chen et al.
<table>
<thead>
<tr>
<th>METHODS</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Southern Blotting | High specificity
Differentiation between episomal and integrated DNA
Detects 0.1 copies of DNA per cell | Not easily applied to FFPE samples
Practical/clinical utilization |
| PCR | High sensitivity
Cost effective
Several commercially available primer sets | Low specificity
No quantitative measure of viral load
No distinction between episomal and integrated DNA |
| Real time-PCR | High sensitivity
High specificity
Ability to differentiate between episomal and integrated DNA | False positive and false negative products
No direct evidence of viral integration |
| ISH | High specificity
High sensitivity
Ability to differentiate between episomal and integrated DNA | Technically difficult to be used in routine screening |
| p16 Immunostaining | High Sensitivity
Easily applied to FFPE tissue | Surrogate marker
Specificity not ideal |

Table 1. Possible methods and techniques of HPV detection. Adopted and modified according Venuti and Paolini26
episomal virus. In this way, ISH may overcome some of the limitations of PCR by detecting only clinically relevant infection. Although the specificity of this method is high, the sensitivity is not ideal35. The sensitivity of ISH is still less than that seen in PCR analysis. However, ISH is more specific for HPV infection than p16 immunohistochemical staining30. In addition, current ISH-based assays are considered by many experts in the field to be too laborious and to have insufficient clinical sensitivity to be used in routine screening34.

Immunohistochemical Staining for p16

The transcription of the viral oncoprotein E7 inactivate the function of the pRB gene, causing perturbation of other key components of the retinoblastoma pathway, and to induce upregulation of P16 protein expression, reaching levels that can be detected readily by immunohistochemistry. Accordingly, P16 immunohistochemistry is sometimes advocated as a surrogate marker of HPV infection36.

P16 immunostaining is an appropriate assay for elimination of HPV negative cases from any additional analysis. Since specificity is almost 100\%, a finding positive for HPV 16 on in situ hybridization reduces the number of false-positive cases by P16 immunostaining alone. Whatever the method is used to establish the presence of non-HPV 16 virus types, upfront use of P16 immunostaining and HPV 16 in-situ hybridization accurately establishes the HPV status of most oropharyngeal cancers37.

Alternatively, P16 overexpression could suggest pRB pathway disturbances unrelated to HPV. Using E6 and E7 mRNA levels as conclusive evidence of HPV involvement, P16 immunostaining is 100\% sensitive but only 79\% specific as a surrogate marker of HPV infection36.

4. Conclusion

Many different HPV tests exist, and much more information about their analytical and clinical properties. All of the methods are able to give information about the presence of HPV in biological samples. At the present time, IHC staining for p16 and PCR appear to be the most sensitive markers for HPV, while ISH confers the great specificity. The combination of a sensitive test, p16 IHC and a specific test, ISH could allow for the best potential to accurately establish the presence or absence of HPV. This information is crucial for the prognostic assessment of these patients but it is ineffective for the individuation of people at risk of tumor after HPV infection. Thus, there is a need for improving these HPV diagnostic tools by detection not just of the virus, but also simultaneous detection of other biological markers like alterations in tumor suppressor gene pathways and the modification of the gene expression profiles.

This work was financially supported by project SPINCANCER NT/14337.

The authors declare they have no potential conflicts of interests concerning drugs, products, services or another research outputs in this study.

The Editorial Board declares that the manuscript met the ICMJE „uniform requirements“ for biomedical papers.

References

6. Yuan, C. H.; Filippova, M.; Duerksen-Hughes, P.,

