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for the determination of protein expression 
in mammalian tissues [3]. Usually, MALDI is 
combined with time-of-flight mass spectrometry 
(TOF MS), because it measures complete mass 
spectra over wide mass ranges at the same 
time [4]. There also exist other types of mass 
spectrometers connected with MALDI, such as 
Fourier transform ion cyclotron resonance mass 
spectrometers (FT-ICR MS) or linear ion trap 
with orbitrap mass spectrometers (LTQ Orbitrap 
MS) [5-7]. Currently, the MALDI MSI technique 
is the subject of comprehensive research to 
improve it in different ways – time of analysis 
[8,9], spatial resolution [10], and sensitivity 
and detection of different analytes [11,12]. 
Information gained from MALDI MSI can be 
correlated with immunohistochemical images 
[13] or with images from other techniques such 
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1. Introduction 
The matrix assisted laser desorption/

ionization (MALDI) technique was introduced 
by Karas et al. in 1985 [1]. Three years later, the 
same research group published a first study on 
the utilization of this ionization method for 
mass spectrometry of proteins [2]. Since its 
introduction, MALDI mass spectrometry was 
developed rapidly. Nowadays, it is routinely 
used for characterization of peptides, proteins 
and identification of bacteria. Because of its soft 
biomolecules ionization, MALDI was found 
to be useful for mass spectrometry imaging 
of a variety of samples where information 
regarding the spatial distribution of molecules 
is needed. At the turn of the third millennium, 
MALDI mass spectrometry imaging (MALDI 
MSI, MALDI imaging) was firstly applied 

 Matrix-assisted laser desorption/ionization mass spectrometry imaging technique (MALDI 
MSI) has mainly focused on imaging the spatial distribution of biomarkers, drugs and 
metabolites in different tissues. Due to ion suppression, MALDI MSI is usually used in the 
m/z range from 0 to 30 kDa. To detect a wide range of analyte concentrations, it is necessary 
to prepare tissue samples appropriately; cryosectioning has been found to be a successful 
method. There is also a need to process an enormous amount of formaldehyde-fixed tissue 
samples from histopatology/histochemistry. This article presents a short history and recent 
progress in MALDI MSI techniques for the imaging of diverse tissues.
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as magnetic resonance imaging (MRI) [14] or 
laser ablation-inductively coupled plasma mass 
spectrometry/atomic emission spectrometry 
(LA-ICP MS/AES) [15]. There exist several 
extensive reviews on recent progress in MALDI 
MSI and on the development of MALDI imaging 
techniques that are recommended to readers 
with interest in this field [16-18].

In the following paragraphs, a brief descrip-
tion of the current state of the use of MALDI 
MSI in research on different analytes in tissues 
will be given.

2. MALDI MSI in study of various 
tissues

In order for MALDI MSI analyses to generate 
reproducible data, proper sample preparation 
is crucial. Usually, various organs [19,20], plant 
tissues [21], bacterial colonies [22] or cells [23] 
are analyzed. There are different ways of pre-
paring tissue sections depending on the state 
of tissue sample – whether it is fresh, frozen 
(-80 °C), conserved in ethanol or fixed in form-
aldehyde and embedded in paraffin [24,25]. 
The most frequently analyzed tissues are liver, 
kidneys, lungs, brain, heart and all types of 
tumors. The preferred preparation of tissue is 
quick and deep freezing of fresh samples – this 
minimalizes the degradation of analytes and 
fixes their spatial distribution. Rapid freezing 
of the entire tissue is crucial to prevent the 
sample from cracking and the formation of ice 
crystals. The tissue sample is firstly wrapped in 
thin aluminum foil and then is immersed repe-
ated in the freezing liquid (nitrogen, ethanol, 
isopropanol). Afterwards, the tissue sample is 
stored at -40 or -80 °C, depending on the used 
freezing liquid. The optimal thickness of frozen 
tissue sections, made in cryotome is 5-20 μm. 
Fixation of frozen tissue sections on the con-
ductive ITO (indium-tin oxide) glass slide is 
generally conducted by dehydration – usually 
a glass slide with tissue is briefly soaked in 70% 
ethanol and then soaked for a few minutes in 
90% and 100% ethanol. For protein analysis, 
prior to the application of matrix, lipids and 
salts are washed away with ethanol and water 
or other organic solvents (xylene, chloroform). 
To desalt tissue samples prior to lipid analysis 

a solution of ammonium acetate or ammonium 
formate is recommended [23].

A general MALDI MSI workflow consists of 
cutting the tissue into slices, scanning the glass 
slide, applying a matrix solution, measuring the 
mass spectra, and analyzing the data using 2D 
mass maps (Fig. 1). For MALDI MSI of tissue 
sections that have been formalin-fixed and 
paraffin-embedded, sample preparation is more 
complicated. Paraffin can suppress ionization, 
and formaldehyde fixation causes dehydration, 
denaturation, crosslinking (methylene brid-
ges), and the precipitation and agglutination of 
proteins, which prevents detection. Therefore, 
the deparaffination of tissue samples by incu-
bation in xylene for a few minutes is needed. 
Then, rehydration is carried out by soaking 
the slides with the tissue samples in a series of 
ethanol solutions gradually decreasing in con-
centration. Antigens are recovered by breaking 
methylene bridges of cross-linked proteins at 
high temperatures and incubating in buffers 
differing in pH and ionic strength [13].

2.1 MALDI MSI of tumors 
Tumors are the most frequently studied tissues 

by MALDI MSI. Oncology research plays an 
important role in the rapid development of 
MALDI MSI techniques. 

The majority of researchers are searching for 
new cancer biomarkers or for distributions of 
drugs and their metabolites inside tumor tissue. 
In order to obtain the necessary data, sample 
preparation and matrix application must be 
optimized for each type of investigated analyte. 
Some analytes suffer from ion suppression, for 
example, and require different methods for 
their study.

Nearly all types of tumors have been investiga-
ted by MALDI MSI techniques. The most often 
applied MALDI MSI technique is MALDI-TOF 
MSI. For example, a time-of-flight detector was 
used to image metabolites in colorectal liver 
cancer metastases in a mouse model [26]. The 
applied matrix was N (1 naphthyl)ethylene-
diamine dihydrochloride (NEDC). This mat-
rix was proven to be useful in the analysis of 
oligosaccharides and glycerophospholipids. 
In another study, MALDI-TOF MSI was com-
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bined with MALDI-FT-ICR MSI to visualize 
and quantify the distribution of the anticancer 
drug, irinotecan, and its active metabolite, SN-
38, in colon cancer (in a murine model) [27]. 
Rodrigo et al. reviewed that MALDI-TOF MSI 
was also used in studies of gastrointestinal 
cancer, cancer of the respiratory system, renal 
and bladder cancer, and prostate, breast and 
ovarian cancer, in order to find new cancer 
biomarkers or to study the spatial distribution 
of anticancer drugs in tumors [28].

MALDI-FT-ICR MSI was employed in in situ 
studies of lipids in head and neck tumors [29], 
where it served for gaining high resolution 
data sets for higher mass accuracy and better 
interpretation of lipidome, and in a study, where 
it helped to find and optimize an ex vivo model 
for better and faster optimization of sample 
preparation procedures in MALDI drug ima-
ging studies [30].

MALDI-LTQ Orbitrap MSI is another tech-
nique that has been used for drug imaging in 
human lung tumor sections and rat xenograft 
tissue sections, where thin sections were expo-
sed to pharmaceutical drugs (erlotinib, gefiti-
nib, and tiotropium), and were characterized 
by microenvironment localization [31]. This 
method was also applied  in a study, where 
a comparison between two different ways of 
carrying out pulmonary drug administration 
(inhalation of a nebulized aerosol of aqueous 

drug solutions and intratracheal administrati-
on) was carried out in guinea pigs (model orga-
nism). Results indicated different distributions 
of the drug in connection with different method 
of administration [32]. 

2.2 MALDI MSI of other tissues
The (analytical) power of MALDI MSI has 

been demonstrated in many studies and with 
diverse types of tissues. For example, dermato-

Figure 1: The scheme of typical MALDI MSI workflow.
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logy/cosmetics use MALDI MSI to investigate 
the effect of age and peptide applications on 
the skin [33]. In other study from the fields of 
cosmetics and forensics, MALDI MSI was used 
to investigate reactions of hydrogen peroxide 
with cocaine in hair to provide information 
whether cocaine and his reaction products can 
be detected in hair after bleaching. It was found 
that all compounds of interest are in the hyd-
rogen peroxide and wash solutions, and thus 
all evidence of cocaine use might be lost after 
a hair bleaching treatment [34]. An interesting 
study on MALDI MS/MS imaging of the drug 
tilidine in hair after external contamination 
revealed that for correct segmental hair analysis 
it is necessary to collect hair samples not only 
several weeks after intake but also within the 
first days after intake [35]. Another study on 
detection of blood in fingerprints revealed that 
MALDI MSI can support existing presumptive 
tests by detecting the molecules of haem and 
haemoglobin through their m/z ratios. Mo-
reover, MALDI MSI is compatible with other 
methods employed for enhancing fingerprints 
contaminated by blood [36].

Mammalian retinas have also been investiga-
ted, and high resolution MALDI MSI was used 
to obtain information about the distribution of 
lipids on the retina [37]. Resolution at the level 
of a single cell was achieved.

Mesenchymal stem cells were investigated by 
MALDI MSI for the characterization of lipid 
markers of chondrogenic differentiation [38], 
and 20 different lipid species were identified. 

Several studies focused on MALDI MSI of 
plant tissues. Soares et al. investigated hespe-
ridin and rutin in Citrus sinensis grafted on 
Citrus limonia after infection by Xylella fas-
tidiosa [39]. They suggested that hesperidin 
plays a role in the plant-pathogen interaction. 
In previous study, hypericin (a red anthraqui-
none-derivative with medicinal properties) and 
related phytochemicals were investigated in the 
leaves of Hypericum species by high resolution 
MALDI MSI [40]. Yet another study focused on 
using MALDI MSI to detect fungicide residue on 
wheat leaf surfaces, demonstrating the potential 
of MALDI MSI for monitoring the distribution 
of agrochemicals on leaves [41].

Insects have also been the subject of MALDI 
MSI. Klein et al. investigated plant-pest che-
mical interfaces inside leaves, specifically the 
interactions between soybean and aphids and 
rice and bacteria were studied [42]. Whole-
-body sections and various organs of the rove 
beetle, Paederus riparius, were investigated by 
atmospheric pressure high resolution scanning 
microprobe MALDI MSI to locate metabolites 
of the defensive compounds pederin, pseudo-
pederin and pederon [43]. An interesting study 
from Brazil focused on queen bee signals in the 
stingless bee Friesella schrottkyi and illustrated 
the spatial distribution of active compounds 
on queen bees [44]. The spatial distribution 
of lipids in Drosophila melanogaster was also 
analyzed by MALDI MSI to provide more infor-
mation about this model organism [45].

3. Conclusion 
It is clear that MALDI MSI has potential in 

different research fields. Some significant im-
provements of MALDI imaging techniques 
have been made and surely these techniques 
will undergo important improvements and 
modernization to serve analyze tumors and 
other tissues. Further developments and the 
combination of MALDI MSI with other ima-
ging techniques or quantitative methods will 
result in wider use of MALDI MSI, and clinical 
methods using MALDI MSI could be validated 
and applied in routine analytical processes in 
laboratories.

MALDI MSI can be used as supportive tech-
nique in clinical research, mainly in oncology. 
Finding new cancer biomarkers is so important 
that all suitable methods should be tested. The 
task for researchers is to find relevant analytical 
standards and make MALDI MSI a standard 
analytical method as soon as possible.

List of abbreviations
AES … atomic emission spectrometry
FT … Fourier transform
ICP … inductively coupled plasma
ICR … ion cyclotron resonance
ITO … indium-tin oxide
LA … laser ablation
LTQ … linear ion trap/linear trap quadrupole
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MALDI … matrix assisted laser desorption/
ionization
MRI … magnetic resonance imaging
MS … mass spectrometry/spectrometer
MSI … mass spectrometry imaging
NEDC … N (1 naphthyl)ethylenediamine di-
hydrochloride 
TOF … time-of-flight
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