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DNA stabilization and in gene expression [5]. 
As some metals are crucial for body function, 
dyshomeostasis or deficiency of these elements 
can result in disease [6-8]. The Metallome is the 
distribution of inorganic species in cell. Meta-
llomics and metalloproteomics are emerging 
fields addressing the role, uptake, transport 
and storage of the trace metals essential for 
life. Metallomics is defined as the analysis of the 
entirety of metal and metalloid species within 
a cell or tissue, whereas metalloproteomics fo-
cuses on exploration of the function of metals 
associated with proteins [9]. 

There are three main approaches being deve-
loped in metallomics and metalloproteomics:
•	 The first is and widely used is mass 

spectrometry, particularly electrospray 
ionisation mass spectrometry (ESI-MS) 
and inductively coupled plasma mass 
spectrometry connected with laser ablation 
(LA-ICP-MS). This connection allows us to 
see the lateral distribution of elements on 
the sample surface. These two techniques 
are ideal partners in comprehensive 
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1. Introduction 
Recent advances in understanding the hu-

man genome have been made possible due 
to multidisciplinary cooperation between life 
sciences and technology. Genomics has su-
cceeded in producing complete genomic DNA 
sequences of numerous species, but we are 
still some way from understanding differences 
between normal and pathological processes of 
cells and organisms [1]. Currently, attention is 
paid towards proteomics providing information 
about proteins localizations, structures and 
function, and most importantly, interaction 
with other proteins [2]. Recent progresses in 
high-throughput sample separation and mass 
spectrometry have impacted positively the pro-
teomic characterization of proteins in systems 
biology [3]. Metalloproteins belong to the most 
diverse classes of protein, with intrinsic metal 
atoms providing a catalytic, regulatory and 
structure role essential to proteins function 
[4]. Transition metals such as copper, iron and 
zinc play important roles in life. Zn, the most 
abundant cellular transition metal, plays a vital 
role for functions of more than 300 enzymes, in 

There is still a lot of unknown related to our perceptiveness to civilization and other illnesses 
including tumour ones often connected with environmental changes. There is also still an 
enormous field for cutting-edge research necessary to establish a role the unique tiny particles 
playing in the whole concert leading to our fitness or illness or, telling in other words, to 
normal or pathological functioning of our body cells. Studying metallome as the whole picture 
composed from metals, peptides, proteins and cell parts belongs to the most challenging issues 
of present biomedicine. Here, we summarize the omics advances in this field with special focus 
on in vivo imaging systems
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structural and functional characterization 
of metalloproteins. LA-ICP-MS has been 
extensively developed for elemental mapping 
in bio-imaging applications.  [10, 11]. 

•	 Second approach is high-throughput X-ray 
absorption spectroscopy (HT-XAS) to 
provide direct metal analysis of proteins 
and proteomic metals distribution in tissues 
and cells [12]. 

•	 Third approach is computational bioinforma-
tics analysis of the obtained results. Compa-
red to genomics and proteomics, metallomics 
and metalloproteomics are relatively new 
fields that require the design and develop-
ment of completely new analytical and com-
puting approaches for dada analysis [13]. 
It has to be acknowledged that genomics 
and proteomics already have collected large 
amount of data that can be reused in metallo-
mic and metalloproteomic studies to speed 
up advancement of these new disciplines. 
This is certainly a considerable advantage, 
but these data provide only a part of the 
complete picture – it has to be completed 
by additional numerous measurements

2. Metallothioneins
Metallothionein is one of the interesting 

proteins known as marker of heavy metal 
poisoning, with potential to be considered as 
a tumour diseases marker [14, 15]. Metallothi-
oneins (MTs) are low-molecular mass intrace-
llular proteins rich in cysteine, which are able 
to bind metals in their structure. Previously it 
was thought that MTs were involved only in 
storage, homeostasis and detoxification of metal 
ions, but based on recent findings, they are also 
involved in inhibition of apoptosis, immuno-
modulation, cell proliferation, regulation of 
transcription, and enzymes activation via zinc 
administration to proteins and via regulation 
of zinc ions concentration [16, 17]. MT genes 
are regulated in tissue- and isoform-specific 
manner by numerous factors, including general 
responsiveness to zinc and other dietary fac-
tors, inflammation and environmental stress. 
Hence changes in MT gene expression have 
been reported for many diseases [17]. The che-
mical reactivity of MTs makes the level of MT 
induction a factor to contend with in the efficacy 
of treatment with certain drugs, e.g. cancer 

chemotherapeutic agents, especially platinum 
drugs [18] and anthracyclines[19]. An area that 
also has received considerable attention is the 
value of MTs as biomarkers for zinc status [20], 
metal exposure [21] and the prognosis of certain 
cancers [22]. In addition, there is some evidence 
that increased heavy metal content and MTs 
in tumour tissues is connected to increased 
invasiveness and metastasizing of a tumour [16, 
23-25]. Aside from understanding of the role 
of MTs and both essential and non-essential 
metals in carcinogenesis and tumour growth, 
the study of metal distribution within a tumour 
can answer many important questions about 
the growth of the tumour and its regulation 
[26, 27]. Understanding of this phenomenon 
can subsequently lead to our discovering of 
new approaches to tumour growth inhibition.

3. Suitable animal models
Suitable animal models for various cancers 

are indispensable to studying the above-men-
tioned aspects in vivo. Animal models have to 
be very similar to human cancers to bring real 
and clinically utilisable results. The MeLiM 
(Melanoma-bearing Libechov Minipig) strain 
of miniature pigs with hereditary malignant 
melanoma has been established in the Institute 
of Animal Physiology and Genetics (IAPG), the 
Academy of Sciences of the Czech Republic, v.v.i. 
in Libechov. Melanoma in this strain shows 
many histopathological [28-30], immunohisto-
chemical [31], biochemical [32], and molecular 
biological similarities [33] to human melanoma. 
Another cancer model is an inoculated syngenic 
sarcoma in the Lewis rat [28-30, 34, 35]. The 
R5-28 tumour cell line was established from 
histologically verified sarcoma that appeared 
spontaneously in one female of the Lewis rat. 
These cells, when inoculated subcutaneously, 
develop in rapidly growing sarcomas. In the 
both models, animals with either progression 
or spontaneous regression of tumours appear.
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4. Advanced nanomaterials for in 
vivo imaging

Advanced nanomaterials due to their easy 
penetration to tissues belong among modern 
methods for studying tumour progression [36]. 
Generally, 200 nm is considered as the upper 
limit for the size of nanoparticles, while the 
minimum diameter should be about 10 nm. 
Certainly, nanoparticle property requirements 
also depend on tumour characteristics inclu-
ding cancer type, stage of the disease, locati-
on in the body, tumour vascularisation and 
properties of the interstitial matrix or host 
species [37]. These requirements are summa-
rized in a review by Adiseshaiah et al. [38]. 
Magnetic nanoparticles are well-established 
elements that offer controlled size, ability to 

be manipulated externally, and enhancement 
of contrast in magnetic resonance imaging 
(MRI). Iron-based nanoparticles in particular 
have been used as therapeutic agents with spe-
cific application as contrasting agents for MRI 
and magnetically targeted drug delivery to the 
tumour cell (Fig. 1).

Molecular imaging refers to the characteri-
zation and measurement of biological proce-
sses at the cellular and/or molecular level, its 
modalities include optical bioluminescence, 
optical fluorescence, ultrasound, X ray me-
thods including CT, MRI, magnetic resonance 
spectroscopy (MRS), single-photon-emission 
computed tomography (SPECT) and positron 
emission tomography (PET) [39, 40]. In the last 
decade, molecular imaging, a subfield of func-

Figure 1:  Advanced nanomedicine will be able to provide much earlier diagnosis and/or therapy of 
cancer. A patient who is suspected to have cancer will likely undergo an application (targeting anticancer 
drugs, nanorobots, diagnostic particles) into the bloodstream. Then, special particles will specifically 
interact with cancer cells. The effect obtained is possible to use for diagnostic imaging (sensor test chips 
containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer 
cells, which could enable the detection and diagnosis of cancer in the early stages from a few drops of 
a patient‘s blood), localized other anticancer therapy (chemotherapy, brachytherapy) and or killing all 
cancer cells in human body. The final stage will be the curing of the patient
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tional imaging, has become an essential tool in 
the arsenal of bio-imaging, understood as the 
range of all imaging technologies covering the 
full scale of biological and medical applications 
from molecule to patient [37, 41-44]. 

5. Conclusions 
Using of omics approaches based on advanced 

materials is of great importance for the field of 
suggestions, construction and employment of 
diagnostic methods and treatment protocols. 
Those based on metals have numerous advan-
tages including low cost and stability.  
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