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dealing that there is significant emergence of 
another pandemic. The question is when and 
where it will come and how much serious it 
will be [14-16]. 

Currently we are better prepared for the fight 
against epidemics representing by improved 
prevention, diagnosis and therapy [17-19]. On 
the other hand risk of extremely rapid spread 
of the pandemic increase because of the glo-
balization, airplane transport and growth of 
population [20]. For this reason it is necessary 
to search new possibilities in the fields of pre-
vention, treatment and diagnosis. 

2. Structure of influenza virion
Influenza virions (Fig. 1) are enveloped, the 

capsid of the virus may be spherical or filamen-
tous. The genome of influenza viruses is a linear, 
segmented and formed by (-) ssRNA. Influenza 
genom was encoded in 1976 [21, 22]. Till 2001, 
eight genome segments (Influenza A and B), 
and ten proteins, encoded by them, were descri-
bed: nucleoprotein (NP), haemagglutinin (HA), 
neuraminidase (NA), proteins of polymerase 
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1.  Introduction
Social, economic and environmental impacts 

of annual seasonal epidemics are considerable, 
it is almost impossible to estimate what would 
happen in the case of a pandemic. Economic 
losses associated with Highly pathogenic avi-
an influenza (HPAI) in the US were estimated 
on tens to hundreds millions of dollars [5]. In 
Europe the situation wasń t better. In the Ne-
therlands HPAI outbreak lasted two months, 
affecting 255 poultry farms and more than 30 
million domestic fowl had to be killed [6]. 

Impact of influenza pandemics are known 
from the history of the 20th century, when 
three big influenza pandemics were described: 
Spanish Flu (1918), the Asian flu (1957) and 
Hong Kong-Flu (1968) [7]. The Spanish flu is 
regarded as the biggest in history, the number 
of victims was estimated on 50 million [8]. In 
the 21st century, two epidemics with pandemic 
potential (avian and swine flu) were recorded 
[9, 10]. Recently new subtypes such as H7N7 
and H7N2 [11], H9N2 [12], H7N9 [13] are able 
to cause human infection. Many researches 

Influenza represents one of the biggest threats to the global population [1] and is conside-
red as the one of the potential most dangerous pandemic agents. Not surprisingly, the World 
Health Organization (WHO) initiated the Global Influenza Program (GIP), which provides to 
member states strategic guidance, technical support and coordination of activities necessary 
for improving the preparedness to combat with effects of seasonal (or pandemic) influenza, 
which may represent danger to the health and lives of global population [2, 3]. According to 
WHO is seasonal influenza responsible for several million cases and almost half a million de-
aths annually [4]. Aim of this article is provide an overview of the structure of influenza virus 
and linking of the individual structures in the life cycle of influenza virion.
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complex (PB1 PB2 and PA), matrix proteins 
(M1 and M2) and non-structural proteins (NS1 
and NS2) [23]. In 2001, mitochondrial protein 
PB1-F2 [24] was described and up till 2012 six 
other proteins were found: PB1-N40 [25], PA-X 
[26] and NS3 [27], M42 [28], PA-N155 [29] and 
PA-N182 [29].

Total size of the Influenza A genome is 
13.5   kbp, the size of different ge-
nome segments varies between 890 
and 2341 bp [30]. Most of influenza 
A and B proteins are enclosed by li-
pid bilayer membrane, only three of 
them constitute an exceptions – two 
of them has antigenetic characters: 
trimer HA and tetramer NA. The thi-
rd one, called M2, is integrated into 
the membrane and serves as a ion 
channel [31].

All of the segments of vRNA are as-
sociated with polymerase complex 
and nucleoprotein (NP), and they 
form ribonucleoproteins (RNP), 
which are responsible for transcription and 
replication of influenza [32, 33]. Structure of the 
native RNP was described by Arranz et al. [34]. 

influenza proteins, coded by relevant 
segments:
•  PA, PB1, PB2, PB1-F2 transcripts are on 1st, 

2nd, and 3rd segments. PA, PB1, PB2 forms 
polymerase complex, PB1-F2 is a product 
of  an alternative open reading frame.

•  HA (Haemagglutinin) transcript is on the 
4th segment.

•  NP (Nucleoprotein) transcript is on the 5th 
segment.

•  NA (Neuraminidase) transcript is on the 
6th segment.

• M1 (Matrix) transcript is on the 7th segment.
•  M2 (M2 ion channel) transcript is on the 

7th segment, splicing of M1 transcript.
•  NS1 (Non-structural protein) transcript is 

on the 8th segment.
•  NS2 (NEP Nuclear export protein) trans-

cript is on the 8th segment, and is formed 
by splicing of NS1 transcript.

2.1 Viral polymerase complex (PB1, 
PB2 and PA)

All of segments of influenza genome are as-
sembled into complexes, containing RNA, poly-
merase complex and nucleoprotein. These com-
plexes are characterised as ribonucleoproteins 
(RNPs) and represent minimal transcription 
and replication equipment of influenza virus. 

Viral polymerase formed complementary RNA 
(cRNA) during replication. cRNA is used for 
synthesis of new vRNA copies [35, 36]. Mole-
cular mechanisms of transcription and replica-
tion is not fully understood, but recent studies 
suggest that transcription can be implemented 
by cis-acting RNA polymerase, while replication 
by trans-acting RNA polymerase [37]. Viral 
polymerase contains two alkaline polymerase 
proteins (PB1, PB2) and one acidic protein PA, 
assembled into structure of trimer, where C end 
of PA binds N end of PB1 and C end of PB1 binds 
N end of PB2 [34, 35]. PB1 represents active side 
for binding of 5́ and 3´ terminal ends of vRNA 
and cRNA [38]. PA and PB2 play the key roles in 
initiation of transcription process, binding and 
cleavage of the host pre-mRNA [37]. Many of 
influenza strains expresses the PB1-F2 protein, 
which is transcribed from an alternative open 
reading frame (+1 ORF) PB1. PB1-F2 protein is 
involved in the induction of apoptosis of host 
cells, reacts with PB1, influences activity of 
the polymerase complex, and participates to 
the viral pathogenesis of some influenza virus 
strains [39].
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2.2 Haemagglutinin
Haemagglutinin (HA) is trans-membrane 

glycoprotein (size 13.5 nm, molecular weight 
76 kDa). HA is target molecule for neutralising 
antibodies. Primary function of HA is initiation 
of infection, and interaction with sialic acid 
receptor of host cell [33, 40]. Interaction of HA 
with sialic acid receptor leads to virus entry 
into the host cell, release of viral RNA and viral 
replication. Currently, the most widespread 
HA subtypes of influenza A in the human po-
pulation are H1 and H3. Exceptionally avian 
HA subtypes can cause disease in humans: H5 
[41, 42]; H7 [43] and H9 [44]. 

HA monomers are synthesized separately as 
precursor HA0, which are proteolytically clea-
ved into two sub-unites (HA1 and HA2) [45, 
46]. After cleavage of HA0, three cleaved HA 
structures form the mushroom-shaped trimer 
[47]. Top of the mushroom consists of antipara-
llel β-sheet region HA1 subunits and lower part 
of mushroom consists of three spirally twisted 
α-helices (HA2) [48]. HA1 subunit (receptor 
binding site) allows binding of the virus to host 
cell receptors [47]. Human HA preferentially 
recognize α-2,6 glycosidic bond on receptors, 
whereas avian viruses prefer α-2,3 [33, 47]. 
Preference of human or avian type of receptor 
is given by number of aminoacids in HA.                        

                
2.3 Nucleoprotein

Nucleoprotein (NP) is part of transcription 
equipment, and is bond with viral envelope by 
M1 protein [37]. NP is RNA binding protein, 
forms NP-RNA complex, and poses the template 
for transcription and replication [49]. NP has 
the ability to polymerize in trimeric structure, 
formed by NP monomers connected together 
through loops and pockets of neighbouring 
NPs [32, 50]. Although NP is considered phy-
logenetically as conserved protein, influenza 
B NP (unlike type A) is tetramer [51]. Most 
important functions of the NP are: covering 
vRNA, facilitating NP ś folding into structures 
dsRNP [52]. NP also interacts with PB1 and PB2 
subunits of viral polymerase [33, 37]. Structure 
of NP as a trimeric complex consisting of head, 
body and tail was described using surface plas-
mon resonance (SPR) with high-resolution [53].

2.4 Neuraminidase
Neuraminidase (NA) represents second sur-

face antigen of influenza, and it is involved in 
releasing of newly formed virions out of host 
cell. Neuraminidase has to cleave sialic acid 
from the surface of host cells enzymatically, 
before releasing of new virions [40]. NA is 
an enzyme with hydrolytic activity, cleaving 
the glycosidic bond between the sialic acid 
(N-acetylneuraminic acid) and D-galactosamin 
or D-galactose, which represents HA receptor 
on host cell surface [54, 55]. NA is plugged 
during the penetration of the virus through 
the mucin layer of the mucosa, budding of 
the virus and releasing of the virus from the 
host cells [56]. In 2012 NA mutation D151G of 
A/Tanzania/205/2010 strain, which allows 
NA to assume the function of HA and mediate 
the binding of host cell receptor, was described 
[57]. In 2013 Hooper et al. designed mutation 
G147R, which resulted in take-over of all HA 
functions. This mutation was developed under 
laboratory condition but can occurs also by 
naturally way [55]. 

Antibodies against neuraminidase prevents 
the spread of infection between cells, but they 
do not have neutralizing activity [58]. NA, as 
well as HA, undergo to antigenic drift, which 
may resulted in occurrence of resistance to 
neuraminidase inhibitors (NAIs) [59]. Substi-
tution of arginine (R) on the position 292 by 
lysine (K) R292K is manifested as resistance to 
Oseltamivir and Zanamivir [59, 60]. Another 
mutation, which brings resistance to Oselta-
mivir, is H274Y [61].
                               
2.5 Matrix proteins (M1 and M2)

The seventh segment of vRNA encodes the 
matrix protein (M1) and the ion channel pro-
tein (M2). M1 protein forms structured layer 
under the viral membrane, and forms a bridge 
between the viral envelope and the core (vRNP). 
M2 is a multifunctional membrane protein 
forming a proton channel [62]. The process of 
viral entry into the host cell and release of the 
RNP requires coordinated action of M2 and M1 
proteins [36, 62]. After entry of virus into the 
host cell and release of virion out of endosome, 
the activity of the M2 ion channel increases, 
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thereby increase the flow of positively char-
ged moleucules, which results in acidification. 
Acidification of the internal environment of 
the virus, leads to the disruption of the bond 
between HA and M1 and uncoating of viral 
particles, followed by merging of HA with the 
endosomal membrane, RNP transport close 
to the nucleus, and beginning of viral RNA 
synthesis [30].

2.6 Nonstructural proteins (NS1 and 
NS2)

The eighth segment of type A influenza virus 
encodes two proteins, known as non-structural 
proteins (NS1 and NS2) [63]. These proteins 
are produced by alternative mRNA splicing 
[64]. Both proteins play key role in replica-
tion. Due to this fact they are considered as 
targets for development of new drugs. NS1 is 
a multifunctional protein, and is important 
for escaping out of the host immune system 
[65]. NS1 blocks synthesis of α/β interferons 
[66, 67]. NS1 is RNA binding protein, which is 
involved in regulation of many cell processes: 
inhibition of host mRNA polyadenylation, inhi-
bition of export of polyadenylated host mRNA, 
inhibition splicing of mRNA and inhibition of 
interferon-mediated anti-viral response [68-70]. 
NS1 reduces both synthetic as well as 
pulmonary proinflammatory cytoki-
nes [71]. NS2 was firstly described as 
a part of purified viral particles and 
in the nucleus of infected eukaryotic 
cells [67, 72]. NS2 is also known as 
NEP and is involved in the transport 
of RNA and polymerase protein com-
plex during replication, comparing 
to NS1, which is less described [73]. 
A number of studies showed NS2 par-
ticipation in the regulation of viral 
RNA replication [74, 75].

3. Replication
Influenza viruses are replicated in the co-

lumnar epithelial cells of the respiratory tract 
[76] and are spread via respiratory secretions 
in small aerosol particles, generated during 
sneezing, coughing, and speaking [77]. The 
incubation period is 1-4 days. H1N1 and H3N2 

subtypes (influenza A) and influenza B cu-
rrently circulate in human population [4], the 
prevalence of these three flu strains may vary 
in time or geographically within countries, 
between countries or continents during one 
flu season [76]. 

The initial step of influenza infection is bin-
ding of virion to the host cell surface. Interac-
tions between host and pathogen are mediated 
by HA antigen (on the side of virus) and sialic 
acid receptor (on the side host cell). After the 
successful attachment of the virus to the recep-
tor, membrane fusion occurs and new envelope 
is formed around the virion [71]. New com-
partment (endosome) is formed in the next step, 
thereafter host cell begins to digest the endoso-
me. Decrease of pH (< 6.0) leads to the activation 
of HA [78-80]. HA trimer becomes unstable and 
is partially unfolded [33, 81]. Inner content 
of virion is released into host cell cytoplasm 
after membrane fusion. Viral RNA (vRNA) po-
lymerase complex and RNA-dependent RNA 
polymerase are transported into the cytoplasm 
of the host cell [55, 78]. Subsequently polyme-
rase complex is transported into the host cell 
nucleus where the RNA dependent polymerase 
make positive complementary cRNA which is 
exported into the cytoplasm and translated, or 

remains in the nucleus. Influenza viruses are not 
capable to encode apparatus to produce 5‘cap 
on its own mRNA. 5‘cap is cleaved from the 
host mRNA, and thereafter bonded to viruses 
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Figure 2. Scheme of influenza life cycle
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mRNA [78]. Newly synthesized viral proteins 
are transported using the Golgi apparatus to the 
cell surface, or transported to the nucleus where 
they bind vRNA and contribute to assembling 
of new virions. Synthesized RNA contains a lot 
of uncorrected errors (one nucleotide for each 
10kbp) which leads to the fact, that almost each 
virus contains mutation [36].

Other viral proteins have a wide range of func-
tions, such as cleavage of cellular mRNA to 
obtain nucleotides for the synthesis of vRNA or 
inhibition of translation of host mRNA. vRNA 
and synthesized viral proteins are assembled 
into shape of new virions inside the host cell. 
Thereafter budding unit (in which RNP is in-
serted) is formed on the surface of the host cell, 
which is covered by HA and NA antigens on the 
surface [40]. In order to leave of newly formed 
virions out of the host cell, sialic acid receptors 
must be enzymatically cleaved (this receptor 
was used to bind the virus in early infection by 
HA) [24, 82]. The death of the host cell occurs 
after the release of newly replicated virions.
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